128 research outputs found
Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms
We propose and theoretically investigate a hybrid system composed of a
crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form
a periodic lattice and induce a band structure in the atoms. This system
combines the advantages of scalability and tunability of ultracold atomic
systems with the high fidelity operations and detection offered by trapped ion
systems. It also features close analogies to natural solid-state systems, as
the atomic degrees of freedom couple to phonons of the ion lattice, thereby
emulating a solid-state system. Starting from the microscopic many-body
Hamiltonian, we derive the low energy Hamiltonian including the atomic band
structure and give an expression for the atom-phonon coupling. We discuss
possible experimental implementations such as a Peierls-like transition into a
period-doubled dimerized state.Comment: 5 pages + appendi
Simulation of Quantum Magnetism in Mixed Spin Systems with Impurity Doped Ion Crystal
We propose the realization of linear crystals of cold ions which contain
different atomic species for investigating quantum phase transitions and
frustration effects in spin system beyond the commonly discussed case of
. Mutual spin-spin interactions between ions can be tailored via the
Zeeman effect by applying oscillating magnetic fields with strong gradients.
Further, collective vibrational modes in the mixed ion crystal can be used to
enhance and to vary the strength of spin-spin interactions and even to switch
those forces from a ferro- to an antiferromagnetic character. We consider the
behavior of the effective spin-spin couplings in an ion crystal of spin-1/2
ions doped with high magnetic moment ions with spin S=3. We analyze the ground
state phase diagram and find regions with different spin orders including
ferrimagnetic states. In the most simple non-trivial example we deal with a
linear Ca, Mn, Ca crystal with spins of \{1/2,3,1/2}. To
show the feasibility with current state-of-the-art experiments, we discuss how
quantum phases might be detected using a collective Stern-Gerlach effect of the
ion crystal and high resolution spectroscopy. Here, the state-dependent
laser-induced fluorescence of the indicator spin-1/2 ion, of species
Ca, reveals also the spin state of the simulator spin-3 ions,
Mn as this does not possess suitable levels for optical excitation
and detection.Comment: 15 pages, 5 figure
Wavelength-Scale Imaging of Trapped Ions using a Phase Fresnel lens
A microfabricated phase Fresnel lens was used to image ytterbium ions trapped
in a radio frequency Paul trap. The ions were laser cooled close to the Doppler
limit on the 369.5 nm transition, reducing the ion motion so that each ion
formed a near point source. By detecting the ion fluorescence on the same
transition, near diffraction limited imaging with spot sizes of below 440 nm
(FWHM) was achieved. This is the first demonstration of imaging trapped ions
with a resolution on the order of the transition wavelength.Comment: 8 pages, 3 figure
Two-dimensional array of microtraps with atomic shift register on a chip
Arrays of trapped atoms are the ideal starting point for developing registers
comprising large numbers of physical qubits for storing and processing quantum
information. One very promising approach involves neutral atom traps produced
on microfabricated devices known as atom chips, as almost arbitrary trap
configurations can be realised in a robust and compact package. Until now,
however, atom chip experiments have focused on small systems incorporating
single or only a few individual traps. Here we report experiments on a
two-dimensional array of trapped ultracold atom clouds prepared using a simple
magnetic-film atom chip. We are able to load atoms into hundreds of tightly
confining and optically resolved array sites. We then cool the individual atom
clouds in parallel to the critical temperature required for quantum degeneracy.
Atoms are shuttled across the chip surface utilising the atom chip as an atomic
shift register and local manipulation of atoms is implemented using a focused
laser to rapidly empty individual traps.Comment: 6 pages, 4 figure
All-optical ion generation for ion trap loading
We have investigated the all-optical generation of ions by photo-ionisation
of atoms generated by pulsed laser ablation. A direct comparison between a
resistively heated oven source and pulsed laser ablation is reported. Pulsed
laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium
flux, corresponding to atomic beams produced with oven temperatures greater
than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to
produce a thermal load more than one order of magnitude smaller than the oven
source. The atomic beam distributions obey Maxwell-Boltzmann statistics with
most probable speeds corresponding to temperatures greater than 2200 K. Below a
threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is
composed exclusively of ground state atoms. For higher fluences ions and
excited atoms are generated.Comment: 7 pages, 9 figure
Relativistic quantum mechanics with trapped ions
We consider the quantum simulation of relativistic quantum mechanics, as
described by the Dirac equation and classical potentials, in trapped-ion
systems. We concentrate on three problems of growing complexity. First, we
study the bidimensional relativistic scattering of single Dirac particles by a
linear potential. Furthermore, we explore the case of a Dirac particle in a
magnetic field and its topological properties. Finally, we analyze the problem
of two Dirac particles that are coupled by a controllable and confining
potential. The latter interaction may be useful to study important phenomena as
the confinement and asymptotic freedom of quarks.Comment: 17 pages, 4 figure
Quantum Simulation of Tunneling in Small Systems
A number of quantum algorithms have been performed on small quantum
computers; these include Shor's prime factorization algorithm, error
correction, Grover's search algorithm and a number of analog and digital
quantum simulations. Because of the number of gates and qubits necessary,
however, digital quantum particle simulations remain untested. A contributing
factor to the system size required is the number of ancillary qubits needed to
implement matrix exponentials of the potential operator. Here, we show that a
set of tunneling problems may be investigated with no ancillary qubits and a
cost of one single-qubit operator per time step for the potential evolution. We
show that physically interesting simulations of tunneling using 2 qubits (i.e.
on 4 lattice point grids) may be performed with 40 single and two-qubit gates.
Approximately 70 to 140 gates are needed to see interesting tunneling dynamics
in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure
Background-free detection of trapped ions
We demonstrate a Doppler cooling and detection scheme for ions with low-lying
D levels which almost entirely suppresses scattered laser light background,
while retaining a high fluorescence signal and efficient cooling. We cool a
single ion with a laser on the 2S1/2 to 2P1/2 transition as usual, but repump
via the 2P3/2 level. By filtering out light on the cooling transition and
detecting only the fluorescence from the 2P_3/2 to 2S1/2 decays, we suppress
the scattered laser light background count rate to 1 per second while
maintaining a signal of 29000 per second with moderate saturation of the
cooling transition. This scheme will be particularly useful for experiments
where ions are trapped in close proximity to surfaces, such as the trap
electrodes in microfabricated ion traps, which leads to high background scatter
from the cooling beam
Revisiting special relativity: A natural algebraic alternative to Minkowski spacetime
Minkowski famously introduced the concept of a space-time continuum in 1908,
merging the three dimensions of space with an imaginary time dimension , with the unit imaginary producing the correct spacetime distance , and the results of Einstein's then recently developed theory of special
relativity, thus providing an explanation for Einstein's theory in terms of the
structure of space and time. As an alternative to a planar Minkowski space-time
of two space dimensions and one time dimension, we replace the unit imaginary , with the Clifford bivector for the plane
that also squares to minus one, but which can be included without the addition
of an extra dimension, as it is an integral part of the real Cartesian plane
with the orthonormal basis and . We find that with this model of
planar spacetime, using a two-dimensional Clifford multivector, the spacetime
metric and the Lorentz transformations follow immediately as properties of the
algebra. This also leads to momentum and energy being represented as components
of a multivector and we give a new efficient derivation of Compton's scattering
formula, and a simple formulation of Dirac's and Maxwell's equations. Based on
the mathematical structure of the multivector, we produce a semi-classical
model of massive particles, which can then be viewed as the origin of the
Minkowski spacetime structure and thus a deeper explanation for relativistic
effects. We also find a new perspective on the nature of time, which is now
given a precise mathematical definition as the bivector of the plane.Comment: 29 pages, 2 figure
Quantum Gates and Memory using Microwave Dressed States
Trapped atomic ions have been successfully used for demonstrating basic
elements of universal quantum information processing (QIP). Nevertheless,
scaling up of these methods and techniques to achieve large scale universal
QIP, or more specialized quantum simulations remains challenging. The use of
easily controllable and stable microwave sources instead of complex laser
systems on the other hand promises to remove obstacles to scalability.
Important remaining drawbacks in this approach are the use of magnetic field
sensitive states, which shorten coherence times considerably, and the
requirement to create large stable magnetic field gradients. Here, we present
theoretically a novel approach based on dressing magnetic field sensitive
states with microwave fields which addresses both issues and permits fast
quantum logic. We experimentally demonstrate basic building blocks of this
scheme to show that these dressed states are long-lived and coherence times are
increased by more than two orders of magnitude compared to bare magnetic field
sensitive states. This changes decisively the prospect of microwave-driven ion
trap QIP and offers a new route to extend coherence times for all systems that
suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or
circuit-QED systems.Comment: 9 pages, 4 figure
- …