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Revisiting Special Relativity: A Natural Algebraic
Alternative to Minkowski Spacetime
James M. Chappell*, Azhar Iqbal, Nicolangelo Iannella, Derek Abbott

School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia, Australia

Abstract

Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space
with an imaginary time dimension ict, with the unit imaginary producing the correct spacetime distance x2{c2t2, and the
results of Einstein’s then recently developed theory of special relativity, thus providing an explanation for Einstein’s theory
in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and

one time dimension, we replace the unit imaginary i~
ffiffiffiffiffiffiffiffi
{1
p

, with the Clifford bivector i~e1e2 for the plane that also
squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the
real Cartesian plane with the orthonormal basis e1 and e2. We find that with this model of planar spacetime, using a two-
dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of
the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a
new efficient derivation of Compton’s scattering formula, and a simple formulation of Dirac’s and Maxwell’s equations.
Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can
then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We
also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of
the plane.
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Introduction

It has been well established experimentally that the Lorentz

transformations, provide a correct translation of space and time

measurements from one inertial frame of reference to another.

They were developed by Lorentz [1] with further refinements by

Poincaré [2,3], to explain the null result of the Michelson-Morley

experiment, proposing a length contraction of a laboratory frame

of reference moving with respect to a hypothetical aether [4–8].

Einstein, however, rederived the Lorentz transformations on the

basis of two new fundamental postulates [9], of the invariance of

the laws of physics and the invariance of the speed of light,

between inertial observers, thus eliminating the need for an aether.

Minkowski in 1908, however, also derived the Lorentz transfor-

mations from a different perspective, postulating a spacetime

continuum, from which the results of special relativity also

naturally followed [10], but which additionally provided a general

structure for spacetime within which all the laws of physics should

be described [11,12]. Specifically, he introduced a four-dimen-

sional Euclidean space with the expected Pythagorean distance

measure s2~x2
1zx2

2zx2
3zx2

4, defining x4~ict, where i~
ffiffiffiffiffiffiffiffi
{1
p

is the unit imaginary, which thus allowed one to view spacetime as

a conventional Euclidean space with no difference in treatment

between the x,y,z and ict coordinates [13,14], but still recovering

the invariant distance measure s2~x2
1zx2

2zx2
3{c2t2. This idea

was received favorably by Einstein, and by the wider scientific

community at the time [15], but more recently, with the desire to

remain consistent with the real metric of general relativity, the unit

imaginary has been replaced with a four-dimensional metric

signature (z,z,z,{) [16,17].

In this paper however we propose an alternate spacetime

framework to Minkowski, using the multivector of a two-

dimensional Clifford algebra, replacing the unit imaginary

representing an imaginary time coordinate, with the Clifford

bivector i~e1e2 of the plane, defined by the orthonormal elements

e1 and e2, which also has the property of squaring to minus one.

The bivector however has several advantages over the unit

imaginary in that (i) it is a composite algebraic component of the

plane and so an extra Euclidean-type dimension is not required

and (ii) the bivector is an algebraic element embedded in a strictly

real space, and hence consistent with the real space of general

relativity. Clifford’s geometric algebra of two-dimensions can be

adopted as a suitable algebraic framework to describe special

relativity, because the Lorentz transforms act separately on the

parallel and perpendicular components of vectors relative to a

boost direction thereby defining a two-dimensional space.

Clifford algebra has been used previously to describe spacetime

[18–21], however these approaches follow Minkowski in describ-

ing a four-dimensional spacetime framework with an associated

mixed metric, such as the STA of Hestenes [18] which uses the

four algebraic non-commuting basis elements c0 . . . c3, with

c2
0~{1 representing the time dimension and c2

1~c2
2~c2

3~1 for

space. In order to relate these definitions to our framework, we can

make the identifications e1~c1c0,e2~c2c0,i~e1e2~c1c2. How-
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ever the STA framework in two dimensions requires three unit

vectors, as opposed to two in our approach, as well as the

requirement for a mixed metric. A related approach by Baylis

[22], called the Algebra of Physical Space (APS), in two

dimensions involves just two space unit vectors that are added to

a scalar variable representing time, that is tzxe1zye2. This is an

effective approach, though we now need to define a special form

for the dot product in order to return the invariant distance,

whereas in our approach we achieve this from the intrinsic

properties of the algebra and a definition of a spacetime event in

Eq. (10).

The representation of time with a Cartesian-type dimension in

conventional approaches including STA, appears ill founded

physically though due to the observed non-Cartesian like behavior

of time, such as the time axis possessing a negative signature and

the observed inability to freely move within the time dimension as

is possible with space dimensions. Recall that although time is

usually described by a positive Cartesian axis, it has a negative

contribution to the Pythagorean distance in this space. Our

approach on the other hand requires a minimal two dimensional

Euclidean space, without the need for an imposed mixed metric

structure, as the invariant spacetime interval arises naturally from

the properties of the algebra, with the four-vectors and tensors

typically employed in special relativity replaced with the multi-

vector, thus requiring only a single Lorentz transformation

operator, which also allows Lorentz covariance to be more easily

ascertained. Also, with time now modeled as a bivector we find an

algebraic structure that more appropriately models the nature of

time.

Clifford’s geometric algebra was first published in 1873,

extending the work of Grassman and Hamilton, creating a single

unified real mathematical framework over Cartesian space, which

naturally included the algebraic properties of scalars, complex

numbers, quaternions and vectors into a single entity, called the

multivector [23]. We find that this general algebraic entity, as part

of a real two-dimensional Clifford algebra Cl2,0(<), provides a

natural alternative to a planar Minkowski vector space <2,1

[24,25].

Two-dimensional Clifford Algebra
In order to describe a planar space, Clifford defined two

algebraic elements e1 and e2, with the product rule.

e2
1~e2

2~1, ð1Þ

with the composite element i~e1e2, denoted by the Greek letter

iota, being anticommuting, that is e1e2~{e2e1, and assuming

associativity squares to minus one [23], that is,

i2~(e1e2)2~e1e2e1e2~{e1e1e2e2~{1, and hence can be used

as an alternative to the scalar imaginary i~
ffiffiffiffiffiffiffiffi
{1
p

as a

representation for the square root of minus one. A general

Clifford multivector can be written through combining the various

algebraic elements, as

azx1e1zx2e2zib, ð2Þ

where a and b are real scalars, x~x1e1zx2e2 represents a planar

vector, with x1,x2 real scalars, and i is the bivector, defining an

associative non-commuting algebra. Denoting ‘<2 as the exterior

algebra of <2 which produces the space of multivectors

<+<2
+ ^2 <2, a four-dimensional real vector space denoted

by Cl2,0.

Geometric product. A key property of Clifford’s algebra, is

given by the product of two vectors, which are special cases of

multivectors defined in Eq. (2). Given the vectors u~u1e1zu2e2

and v~v1e1zv2e2, then using the distributive law for multiplica-

tion over addition, as assumed for an algebraic field, we find.

uv~(u1e1zu2e2)(v1e1zv2e2)~u1v1zu2v2z(u1v2{u2v1)e1e2, ð3Þ

using the properties defined in Eq. (1). We identify u1v1zu2v2 as

the dot product and (u1v2{u2v1)e1e2 as the wedge product, giving

uv~u:vzu ^ v: ð4Þ

Hence the algebraic product of two vectors produces a union of

the dot and wedge products, with the significant advantage that

this product now has an inverse operation. For ûu and v̂v unit

vectors, we have ûu:v̂v~ cos h and ûu ^ v̂v~i sin h, we therefore have

ûuv̂v~ cos hzi sin h, where h is the angle between the two vectors.

We can see from Eq. (4), that for the case of a vector multiplied

by itself, that the wedge product will be zero and hence the square

of a vector v2~v:v~v2
1zv2

2, becomes a scalar quantity. Hence the

Pythagorean length of a vector is simply
ffiffiffiffiffi
v2
p

, and so we can find

the inverse vector.

v{1~
v

v2
: ð5Þ

We define the distance measure or metric over the space as the

scalar part of the geometric product, which for the special case of

two vectors reduces to the dot product as shown in Eq. (3).

Rotations in space. Euler’s formula for complex numbers,

carries over unchanged for the bivector i, with which we define a

rotor.

R~ cos hzi sin h~eih, ð6Þ

which produces a rotation by h on the e1e2 plane, in the same way

as rotations on the Argand diagram. For example, for a unit vector

v~e1 along the e1 axis, acting with the rotor from the right we find

vR~e1( cos hzi sin h)~ cos he1ze2 sin h, thus describing an

anti-clockwise rotation by h. If we alternatively act from the left

with the rotor, we will find a clockwise rotation by h.

However, we now show, that a rotation can be described more

generally as a sequence of two reflections. Given a vector n1

normal to a reflecting surface, with an incident ray given by I, then

we find the reflected ray [23].

r~{n1In1: ð7Þ

If we apply a second reflection, with a unit normal n2, then we

have.

r~n2n1In1n2~( cos h{i sin h)I( cos hzi sin h)~e{ihIeih, ð8Þ

using Eq. (4) for two unit vectors. If the two normals n1 and n2 are

parallel, then no rotation is produced. In fact the rotation

produced is twice the angle between the two normals.

Hence rotations are naturally produced by conjugation, where if

we seek to rotate a vector v by an angle h, we calculate.

An Algebraic Alternative to Minkowski Spacetime
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v0~e{ih=2veih=2, ð9Þ

which rotates in an anticlockwise direction. The rotation formula

in Eq. (9) above, can in two-space, be simplified to a single right

acting operator v’~veih. However this simplification is only

possible in two-dimensions for the special case of rotations on

vectors, and will be incorrect when applied to other algebraic

elements or to vectors in higher dimensions, and hence Eq. (9) is

the preferred way to apply operators such as rotors on vectors and

multivectors.

Results

Clifford Multivectors as a Framework for Space and Time
Considering Minkowski’s definition of spacetime coordinates

and Eq. (2), we describe planar spacetime events as the multi-

vector.

X~(x1e1zx2e2)izict~xizict~(ctzx)i, ð10Þ

with x representing the position vector in the plane and t the

observer time. This is without loss of generality for planar

collisions, as we can always orientate this plane to lie in the plane

of the relative velocity vector between the frames, and special

relativity only requires two axes, the orthogonal and parallel

directions to the relative velocity vector. The interpretation of a

coordinate in Eq. (10) is the conventional one, of an observer

moving through a preconfigured coordinate system, which at each

point has a properly synchronized clock, from which the moving

observer can read off the other frames local time t and position x
[16]. We then find the spacetime interval to be

X 2~(xzct)i(xzct)i~(xzct)(x{ct)~x2{c2t2, ð11Þ

using the fact that i anticommutes with each component of x, and

i2~{1, giving the correct spacetime distance. It is of interest to

note that a modified spacetime coordinate given by X~xzict

will also give the invariant spacetime distance as shown in Eq. (11),

however using the definition in Eq. (10), we find that both the

spacetime coordinates and the electromagnetic field have the

identical Lorentz transformation, as well as enabling us to provide

a unified description of the Dirac and Maxwell equations, shown

later in Eq. (47) and Eq. (48).

We have from Eq. (10) the multivector differential.

dX~(cdtzdx)i, ð12Þ

which is independent of space and time translations as required by

the principle of relativity and so can describe the larger Poincaré

group. For the rest frame of the particle we have dX 2
0 ~{c2dt2,

where we define in this case t to represent the proper time t of the

particle. We have assumed that the speed c is the same in the rest

and the moving frame, as required by Einstein’s second postulate.

Now, if the spacetime interval defined in Eq. (11) is invariant

under the Lorentz transformations defined later in Eq. (23), then

we can equate the rest frame interval to the moving frame interval,

giving

c2dt2~c2dt2{dx2~c2dt2{v2dt2~c2dt2 1{
v2

c2

� �
, ð13Þ

with dx~vdt, and hence, taking the square root, we find the time

dilation formula dt~cdt where

c~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{v2=c2
p : ð14Þ

From Eq. (12), we can now calculate the proper velocity,

differentiating with respect to the proper time, giving the velocity

multivector.

U~
dX

dt
~

dx

dt

dt

dt
izic

dt

dt
~cvizcci~c czvð Þi, ð15Þ

where we use
dt

dt
~c and v~

dx

dt
. We then find

U2~(cvizcci)2~
1

1{v2=c2

� �
(v2{c2)~{c2: ð16Þ

We define the momentum multivector.

P~mU~cmvizcmci~piz
E

c
i, ð17Þ

with the relativistic momentum p~cmv and the total energy

E~cmc2.

Now, as U2~{c2, then P2~{m2c2 is an invariant between

frames describing the conservation of momentum and energy,

which gives.

P2c2~p2c2{E2~{m2c4, ð18Þ

the relativistic expression for the conservation of momentum-

energy. The square of the velocity multivector resolving to a

constant {c2 gives the expected property for the acceleration

multivector A~
dU

dt
, of being orthogonal the the velocity multi-

vector, from

d

dt
U2~2U :

dU

dt
~2U :A~0 ð19Þ

using the chain rule from geometric calculus [26].

The lorentz group. The Lorentz transformations describe

the transformations for observations between inertial systems in

relative motion. The set of transformations describing rotations

and boosts connected with the identity are described as proper and

is referred to as the restricted Lorentz group described in four-

dimensional spacetime as SOz(3,1), whereas if we also permit

reflections we expand the transformations to the homogeneous

Lorentz group SO(3,1). It is worth noting though that in two-

dimensions reflections are also part of the restricted Lorentz group.

The most general transformation of a coordinate multivector is

given by.

X ’~LXN, ð20Þ

where L and N are general multivectors, with the coordinate

multivector X defined in Eq. (10). Requiring the invariance of the

spacetime distance given by X 2 we find the relation

An Algebraic Alternative to Minkowski Spacetime
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X ’2~LXNLXN~X 2, ð21Þ

which is satisfied if NL~LN~+1. For a general multivector

given by L~azvzit, if we define the dagger operation

L{~a{v{it, then we produce a scalar

LL{~L{L~a2{v2zt2. Hence in Eq. (21) we require N~L{

with LL{~+1. For the case LL{~z1, we can write L~eB,

where B~wv̂vzih, see Appendix S1, which describes a set of

transformations connected with the identity. Though these

transformations are not closed they nevertheless satisfy

LL{~eBeB{~eBe{B~e0~1 as required, using the fact that a

multivector commutes with itself and naturally describes the

Thomas rotation for two non-parallel boosts, that is

ew1 v̂v1 ew2 v̂v2~ewv̂vzih. In order to close the operators consisting of

general boosts and rotations we need to write L~ewv̂veih. Other

special transformations can be considered, such as with N~L

provided we enforce the condition a~0, which then describes

space and time reflections, so that we can write a unit multivector

L~B̂B, where B̂B~B=DBD and DBD~
ffiffiffiffiffiffi
B2
p

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2{h2

q
, giving

X ’~B̂BXB̂B, see Eq (7). The second general case LL{~{1 can

be represented as B̂BewB̂B which is a combination of a proper Lorentz

boost and a reflection and so not part of the restricted Lorentz

group, but useful in representing collision processes with an

associated energy transfer such as photons reflecting off electrons

as in Compton scattering, described in Eq. (43).

The exponential of a multivector is defined by constructing the

Taylor series.

eM~1zMz
M2

2!
z

M3

3!
z . . . , ð22Þ

which is absolutely convergent for all multivectors M [18]. Also

because of the closure of multivectors under addition and

multiplication, we see that the exponential of a multivector, must

also produce another multivector, and we find, in fact, a unique

multivector L~eM , for each multivector M [18]. Hence in

summary, all operators of the form

L~ewv̂veih, ð23Þ

applied to the multivector M using the transformation

M ’~LML{~ewv̂veihMe{ihe{wv̂v, ð24Þ

will leave the spacetime distance invariant, defining the restricted

Lorentz group [21]. We find for w~0 pure rotations as described

by Eq. (9), and for h~0, we find pure boosts, where M can denote

the coordinate, momentum or electromagnetic field multivectors.

Spacetime boosts. Using the first component of the restrict-

ed Lorentz group defined in Eq. (23), operators of the form ewv̂v,

where the vector v~v1e1zv2e2.wv̂v, where v̂v is a unit vector, with

v̂v2~1, we find.

ewv̂v~1zwv̂vz
w2

2!
z

w3v̂v

3!
z

w4

4!
z . . . ~ cosh wzv̂v sinh w: ð25Þ

Transforming the spacetime coordinates X we find.

X 0~e{v̂vw=2(xizict)ev̂vw=2

~e{v̂vwxll izx\izictev̂vw

~( cosh wjxll j{ct sinh w)v̂vizx\izi(ct cosh w{ sinh wjxll j),

ð26Þ

where xll and x\ are the coordinates parallel and perpendicular

respectively to the boost velocity direction v̂v, which is the

conventional Lorentz boost, in terms of the rapidity w, defined

by tanh w~v=c, which can be rearranged to give cosh w~c and

sinh w~cv=c. Substituting these relations we find

X ’~c(Dxll D{vt)v̂vizx\izic ct{
vDxll D

c

� �
, ð27Þ

which thus gives the transformation xll
0~c(Dxll D{vt), x\

0~x\

and ct’~c(ct{
vDxll D

c
), the correct Lorentz boost of coordinates.

The formula in Eq. (24) can be simply inverted to give

X~ev̂vw=2X ’e{v̂vw=2, using the fact that ev̂vw=2e{v̂vw=2~e0~1. The

relativity of simultaneity is a fundamental result of special

relativity, and from the perspective of the Clifford multivector,

Eq. (10), we see that it stems from the fact that during a boost

operation, the terms for space e1 and e2 become mixed, resulting

in the bivector term e1e2, thus creating a variation in the observers

time coordinate. Similarly the momentum multivector, shown in

Eq. (17), will follow the same transformation law between frames

shown in Eq. (24), with P’~LPL{. Serendipitously, we also find

that the Lorentz boost of electromagnetic fields is subject to the

same operator as coordinate transformations given by Eq. (24).

Given a general electromagnetic field represented by the

multivector F~Exe1zEye2zicB~EzicB, where for two-di-

mensional space we only have available a single magnetic field

direction Bz out of the plane, represented by the axial vector

iB~ie3Bz. Applying the boost according to Eq. (24), with the

exponentiation of a general boost vector v.wv̂v, we find.

e{
v̂vw
2 Fe

v̂vw
2 ~ cosh

w

2
{v̂v sinh

w

2

� �
EllzE\zicBð Þ cosh

w

2
zv̂v sinh

w

2

� �

~EllzE\ cosh wzv̂v sinh wð ÞzicB cosh wzv̂v sinh wð Þ

~Ellzc E\zivBð Þze1e2 ccB{
jE\jcv

c

� �
,

ð28Þ

which are the correct Lorentz transformations for an electromagnetic field.

That is, the parallel field Ell is unaffected, the perpendicular field E\ has

been increased to cE\ and the term e1e2DE\Dcv=c, represents the e1e2

plane, also describable with an orthogonal vector e3 in three-space, hence

this term gives the expected induced magnetic field Bz from the

perpendicular electric field E\.

Hence the exponential map of a Clifford multivector, naturally

produces the restricted Lorentz transformations of spacetime

coordinates and the electromagnetic field in the plane using the

Lorentz boost Eq. (24), with the spacetime coordinate multivector

given by Eq. (10) and the field multivector F~EzicB.

Velocity addition rule. If we apply two consecutive parallel

boosts, v1~v1v̂v.w1v̂v and v2~v2v̂v.w2v̂v, where tanh w~
v

c
, we

have the combined boost operation.

ew1 v̂vew2 v̂v~e(w1zw2)v̂v: ð29Þ

(28)

An Algebraic Alternative to Minkowski Spacetime
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Hence we have a combined boost velocity.

v~c tanh (w1zw2)~
tanh w1z tanh w2

1z tanh w1 tanh w2

~
v1zv2

1zv1v2=c2
, ð30Þ

the standard relativistic velocity addition formula. By inspection,

the velocity addition formula implies that a velocity can never be

boosted past the speed c, which confirms c as a speed limit.

Hence, we have now demonstrated from the ansatz of the

spacetime coordinate described by the multivector shown in Eq.

(10), that we produce the correct Lorentz transformations, where

the variable c is indeed found to be an invariant speed limit.

Numerically therefore, c can be identified as the speed of light,

since this is the only known physical object which travels at a fixed

speed and represents a universal speed limit.

Applications
pz-meson decay. A classic example of experimental con-

firmation for the special theory of relativity is its application to the

decay of pz-mesons, which are observed to enter the atmosphere

at high velocity v from outer space, having a known decay time at

rest of tp~2:55|10{8 s, giving a spacetime coordinate multi-

vector at rest of X~ictp. Boosting these coordinates to the pz-

meson velocity, we have a boost eiv̂vw=2, where tanh w~DvD=c, so we

therefore find from Eq. (24).

X 0~RXR{~e{v̂vw=2ictpev̂vw=2~ictpev̂vw

~ictp( cosh wzv̂v sinh w)~cvtpizicctp:
ð31Þ

So that we have a decay time in laboratory coordinates of

ct~cctp, with a track length in the laboratory of x~cvtp, in

agreement with experimental determinations [27].

Doppler shift. The Doppler shift of light, refers to the change

of frequency caused by the relative velocity between source and

observer. In the rest frame of the source, we can describe a single

wavelength l of emitted light using Eq. (10), setting up the e1 axis

along the line of sight, as.

X~ cTzle1ð Þi~ lzle1ð Þi, ð32Þ

where T~l=c is the period of the wave, which gives X 2~0 as

required for a photon. We can describe an observer in relative

motion with a boost in the v̂v~e1 direction using tanh w~DvD=c,

and we find from Eq. (24)

X 0~e{v̂vw=2 le1izlið Þev̂vw=2~

le1izlið Þev̂vw~cl 1{
v

c

� �
e1izcl 1{

v

c

� �
i:

ð33Þ

So using the space (or alternatively time) component we find

l’~lc 1{ v
c

� �
and using c~f l we find the standard relativistic

Doppler shift formula.

f ’
f

~
1

c 1{ v
c

� �~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zv=c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{v=c

p : ð34Þ

Thomas rotation. A surprising result occurs when we apply

two non-parallel boosts, followed by their inverse boosts, in that

the velocity of the frame does not return to zero. Furthermore,

there is a rotation of the frame, called the Thomas rotation, a

result, in fact, not noticed until 1925 [16].

For the case of two consecutive general boosts given by.

R~e{w2 v̂v2=2e{w1 v̂v1=2~e{wc v̂vc=2e{ih=2, ð35Þ

where we use the results of Appendix S1, to write this in terms of a

single combined boost wcv̂vc and a rotation h, finding,

tan
h

2
~

sin d sinh
w1
2

sinh
w2
2

cos d sinh
w1
2

sinh
w2
2

{ cosh
w1
2

cosh
w2
2

, ð36Þ

where d is the angle between the boost directions, given by

cos d~v̂v1
:v̂v2. Hence we can see that only for parallel boosts, that is

d~0, will there not in fact be a Thomas rotation, h, of the frame.

We can also write the Thomas rotation as a single exponential

of a multivector.

R~e{wt v̂vt=2{iht=2, ð37Þ

using the results of Appendix S1.

Scattering processes. It is well established that energy and

momentum conservation applies in relativistic dynamics, provided

that the rest energy mc2 is now included along with the

appropriate relativistic corrections, that is, defining momentum

as cmv, and the energy as cmc2. We now show that the two

conservation laws can be bundled into a single momentum

multivector defined in Eq. (17), giving a new perspective on

momentum and energy conservation as the conservation of a

multivector.

For example, if we are given a set of particles that are involved

in an interaction, which then produce another set of particles as

output. Then, in order to describe this collision interaction process

we firstly include a separate momentum multivector for each

particle, and then energy and momentum conservation between

the initial and final states is defined by.

X
Pinitial~

X
Pfinal, ð38Þ

assuming we are dealing with an isolated system. We know

E~DpDc for a massless particle, so using Eq. (17) we write the

momentum multivector for a photon as C~piziDpD, which gives

C2~0 and for a massive particle P2~{m2c2 as shown in Eq.

(18).

For Compton scattering, which involves an input photon

striking an electron at rest, with the deflected photon and moving

electron as products, we can write energy and momentum

conservation using the multivectors as CizPi~Cf zPf , which

we can rearrange to.

(Ci{Cf )zPi~Pf : ð39Þ

Squaring both sides we find.

(Ci{Cf )2zPi(Ci{Cf )z(Ci{Cf )PizP2
i ~P2

f , ð40Þ

remembering that in general the multivectors do not commute.

Now, we have the generic results that P2
i ~P2

f ~{m2c2 and
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(Ci {Cf )2 ~ C2
i zC2

f {CiCf {Cf Ci~{2Ci
:Cf ~{2(pi

:pf {

Dpi DDpf D)~2Dpi DDpf D(1{ cos h), using C2
i ~C2

f ~0. For the following

two terms in Eq. (40), using Pi~imc, we have

mc(i(Ci{Cf )z(Ci{Cf )i)~{2mc(Dpi D{Dpf D). We therefore find

from Eq. (40) that

Dpi DDpf D(1{ cos h){mc(Dpi D{Dpf D)~0: ð41Þ

Dividing through by Dpi DDpf D and substituting DpD~
h

l
we find

Compton’s well known formula.

lf {li~
h

mc
(1{ cos h): ð42Þ

The advantage of the momentum multivector is that energy and

momentum conservation can be considered in unison as shown in

Eq. (39), which also provides a clear solution path, whereas typical

textbook methods rely on manipulating two separate equations

describing momentum and energy conservation [27]. The multi-

vector equation shown in Eq. (39) also leads to a graphical

solution, shown in Fig. 1. This 3D visual model allows us to find a

graphical solution simultaneously conserving relativistic momen-

tum and energy.

We can also describe this process using GA as firstly the

reflection of the photon off the electron, given by P’~{v̂vPv̂v using

Eq. (7), followed by a deboost of the photon due to the energy lost

to the electron, given by the operator e{wv̂v=2, so that the new

photon momentum multivector will be given by.

P’~{e{wv̂v=2v̂vP v̂vewv̂v=2, ð43Þ

where v̂v~ cos de1z sin de2 is the unit vector defining the

direction of the electrons recoil with d measured from the same

axis as h, and w represents the amount of deboost of the photon,

given by c~ cosh w~
k{ cos d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2{ sin2 d

p
sin2 d

, where k~
Dpf D
Dpi D

using Dpf D calculated from Eq. (42) using the relation

cot
h

2
~ 1z

Dpi D
mec

� �
tan d. While w needs to be calculated using

the analysis leading to Eq. (42), Eq. (43) nevertheless gives us an

intuitive and coordinate free way to describe the photon in the

Compton effect, as a reflection and deboost.

Modeling Fundamental Particles with Multivectors
In the previous section we found that the momentum multi-

vector provides a natural description for Compton scattering

involving the interaction of photons and electrons, and so guided

by the mathematical structure of the multivector we produce a

simple model for the electron producing results consistent with

special relativity. Using the multivector defined in Eq. (17), we can

represent a particle moving with a velocity v as.

P~Bkizi
cBv0

2c
, ð44Þ

where Bk~cmv. For a particle at rest, we therefore have

P0~i
Bv0

2c
~i

E

c
, where we use the de Broglie relation between

total energy and frequency E~Bv, to find v0~
2mc2

B
. The

bivector i can be interpreted as a rotation operator, and so for a

simplified semi-classical-type model, we can assume a circular

periodic motion with a radius

r0~
B

2mec
~

lc

2
, ð45Þ

where lc~
B

mec
is the reduced Compton wavelength, which then

gives the tangential velocity v~r0v0~
B

2mec

� �
2mec2

B

� �
~c

indicating an orbiting lightlike particle. This model leads to a

natural explanation for time dilation, using the proper time

invariant distance {c2dt2~dx2{c2dt2, which can be rearranged

to c2dt2~dx2zc2dt2, then because the proper time distance

given by the circumference always moves perpendicular to the

momentum vector, due to the bivector i being perpendicular to the

plane, then the net path distance of the lightlike particle,

representing the observed time cdt is simply the Pythagorean

distance dx2zc2dt2 and because all photons are measured with

the same speed according to special relativity, the period of the

orbit will be increased by c giving the expected time dilation effect.

We have now arrived at a model similar to previous elementary

models of the electron developed by various authors [28–30]. The

Figure 1. Graphical solution to Compton scattering (natural
units with c~1). In order to obtain possible experimental outcomes
the point a is moved in the plane of x and y, as shown, which
automatically satisfies conservation of momentum given by the vector
triangle, pi~pf zpe and the locus of points which also maintains the

shape of the figure in the vertical plane as a parallelogram (shown in
red) satisfies the conservation of energy. We have the Pythagorean

distance giving the final energy of the electron Ee~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

ezm2
p

, so that
the requirement of a parallelogram implies the conservation of energy
Dpi Dzm~Dpf DzEe . Hence this 3D graphical solution simultaneously

satisfies the relativistic conservation of momentum and energy
providing the solutions for Compton scattering.
doi:10.1371/journal.pone.0051756.g001
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models are based on the zitterbewegung phenomena, first described

by [31], an effect recently verified by experiment [32–34].

Schrödinger interpreted the zitterbewegung as arising from the

interference of positive and negative energy states, but later

described by [35] as a lightlike particle oscillating at the speed of

light, with an amplitude equal to the reduced Compton

wavelength.

In the footsteps of previous investigations [28–31,35–38], a

future development is to extend this work to three dimensional

space.

Wave Mechanics
A further application of the momentum multivector defined in

Eq. (17), is through the standard substitutions p~{iB+ and

E~iBLt, from which we produce the spacetime gradient operator

as.

L~i Ltz+ð Þ, ð46Þ

where +~e1Lxze2Ly is the two-space gradient operator. We then

find {L2~L2
t {+2 the d’Alembertian in two dimensions, so that L

is a square root of the d’Alembertian. We therefore write for the

Dirac equation

Ly~my, ð47Þ

where y is a general multivector, shown in Eq. (2), which gives a

Lorentz covariant equation isomorphic to the conventional Dirac

equation in two dimensions (see Appendix S2), and comparable to

the Dirac equation previously developed in three dimensional

Clifford algebra [39,40]. We can write Eq. (47) as L{mð Þy~0,

and acting from the left with Lzmð Þ, we produce

L2
t {+2

� �
y~{m2y, demonstrating that a solution of Eq. (47) is

a solution of the Klein-Gordon equation. Adding an interaction

with an electromagnetic potential we produce

Ly~myzq(VzA)y�, where V and A are the electromagnetic

potentials and y� is a multivector with the sign flipped on the

vector components.

Taking Eq. (47) with m~0 and adding a source multivector

J~(rzJ)i, we can write.

Ly~J, ð48Þ

which is isomorphic to Maxwell’s equations in two dimensions,

provided we write the electromagnetic field as the multivector

y~EziB [40]. The square of the field produces the Lorentz

invariant y2~E2{B2. If we seek to complete the current

multivector J to a full multivector with a bivector term is, that

is J~(rzJzis)i, then we find that is represents magnetic

monopole sources. It is straightforward to show Lorentz covari-

ance. Beginning with the primed frame we have from Eq. (48)

L’y’~J ’. However we have y’~LyL{ and J ’~LJL{, which

implies

LLL{LyL{~LJL{, ð49Þ

which implies therefore implies LF~J, thus demonstrating

covariance, using the property of the Lorentz transformation that

LL{~L{L~1.

If we calculate.

yJ~ EziBð Þ rzJð Þi~

J:EzrEziJBzirBzE ^ Jð Þi~

WzfzirBzE ^ Jð Þi,

ð50Þ

then, inside the bracket, we find the work done by the field on the

current W~J:E as a scalar and the vector force on the charges as

f~rEziJB, equivalent to f~rEzJ|B in three dimensions.

We can write this in terms of the field alone through substituting

Eq. (48), which gives

iy Lyð Þ~Ltuz+:S{LtS{+uz(E:+z+:E)Ez E:+{+:Eð ÞiB ð51Þ

where we have written u~ 1
2

E2zB2
� �

representing the field

energy and S~iBE the Poynting vector in two dimensions.

Inspecting expressions Eq. (50) and Eq. (51) we can see that it

expresses the conservation of energy and momentum. In fact it is

convenient to define a field momentum multivector

T~
1

2
yiy{~

1

2
E2zB2
� �

ziBE

� �
i~ uzSð Þi, ð52Þ

which is in the form of a momentum multivector, as defined in Eq.

(17). Now, we see that the first four terms in Eq. (51) can be

expressed as

LT~i Ltz+ð Þ uzSð Þi~{Ltu{+:SzLtSz+u{+ ^ S, there-

fore we can express the conservation of energy as L~{iy which

gives Ltuz+:S~{J:E, or Poynting’s theorem for the conserva-

tion of energy. The conservation of charge Ltrz+:J~0 also

follows from Maxwell’s equation through taking the divergence of

Eq. (48).

A simple solution path is found through defining the field y in

terms of a multivector potential A~i {VzcAziMð Þ, with M
describing a possible monopole potential, given by y~LA. We

then find Maxwell’s equations defined in Eq. (48) in terms of a

potential becomes L LAð Þ~L2A~J and because L2~+2{ 1
c2 L2

t is

a scalar differential operator we have succeeded in separating

Maxwell’s equations into four independent inhomogeneous wave

equations, given by the scalar, vector and bivector components of

the multivectors, each with known solution.

For the Dirac equation, using the definition of Eq. (52) to define

the Dirac current, we find defining a general Dirac wave function

as y~lzEziB, then.

T~
1

2
lzEziBð Þ(lzE{iB)i

~
1

2
l2zE2zB2
� �

iz(lEziBE)i~ uzSð Þi,
ð53Þ

then we find a positive definite density u and a vector S. Then we

find the divergence gives a conserved current

L~i Ltz+ð Þ: uzSð Þi~{ Ltuz+:Sð Þ~0 as required, now ap-

pearing as the conservation of energy. The Dirac equation for

the plane has recently found application on the movement of

electrons through graphene layers [41].

It is known that Einstein’s equations for general relativity

describing gravity, if placed within a (2+1) spacetime, does not

allow the propagation of gravitational waves as they require two

orthogonal degrees of freedom orthogonal to the direction of

propagation. Although, it should be noted, that Witten showed
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that the equations of GR can still describe the global topology of a

(2+1) spacetime.

Discussion

It is well established that Clifford’s geometric algebra, is a

natural formalism suited for the study of geometrical operations of

the plane, such as reflections and rotations [23]. However, we

demonstrate additionally that spacetime represented as the

Clifford multivector, as shown in Eq. (10), is a natural alternative

to Minkowski spacetime, producing the correct spacetime interval

and the required Lorentz transformation, directly from the

properties of the algebra. Also the use of the momentum

multivector defined in Eq. (17) allows the principle of momentum

and energy conservation to be interpreted as the conservation of a

multivector. We also find that the momentum multivector leads to

a unified description of the Dirac and Maxwell’s equations in the

plane. The mathematical structure of the wave multivector in Eq.

(17), also leads to a simple model for the internal structure of the

electron in Eq. (44), in accordance with previous developments

[28–30,35–38].

The definition of a spacetime event as a multivector in Eq. (10),

also provides a new perspective on the nature of time, in that

rather than being defined as an extra Euclidean-type dimension, it

becomes instead a composite quantity of space, the bivector e1e2.

Minkowski’s famous quote is therefore particularly apt, Henceforth

space by itself, and time by itself, are doomed to fade away into mere shadows,

and only a kind of union of the two will preserve an independent reality [42].

As we have seen in Eq. (6), a bivector represents a rotation

operator, and so it is natural to interpret time as an angular

rotation at the de Broglie frequency w~
E

B
related to the

frequency of the zitterbewegung [28,31,35], and encapsulated by a

two dimensional model implied from the multivector description

in Eq. (44), shown in Fig. 2.

A view of time as a rotational entity, has also been supported by

recent experiments, which have identified a fluctuating electric

field at the de Broglie frequency for an electron [43], and the use

of the rotating electric field in circularly polarized light as an

attosecond clock to probe atomic processes [44–47]. Hence the

popular notion of time, as the ‘river of time’, certainly based in

part on the pronouncement of Newton in the Principia, Book 1

[48], that time … flows equably without relation to anything external …,

combined with time being promoted by Minkowski as a fourth

dimension, may perhaps need to be amended to a description of a

rotational entity, and adopting a water analogy, time would

therefore be viewed descriptively as a whirlpool or an eddy

current. Newton’s concept of the steady flow of time would relate in

the multivector model to the constant spin rate at the de Broglie

frequency of each particle that is constant in the particles’ rest

frame, thus indeed flowing equably. Unforeseen by Newton though

was the observed variation in this rotation rate with an external

observer in relative motion, which produces the relativistic effects

identified by Einstein.

The bivector describing time can also represent a unit area

i~e1e2, and Kepler’s second law of ‘equal areas in equal times’

can be written.

dti~
2m

L

� �
dAi, ð54Þ

where L is the angular momentum, and m the mass of the satellite.

So we can therefore reinterpret Kepler’s second law as a definition

of time, forming a steady ‘tick’, independent of orbit ellipticity.

Kepler’s law is in fact a restatement of the conservation of angular

momentum for central force laws, through

L~mr2 _hh~2m
dA

dt
~constant [49]. It is also now interesting to

consider the impact on the nature of time if we expand the two-

dimensional multivector in Eq. (10) to three dimensions. This

firstly allows space vectors to possess three degrees of freedom

(x,y,z), but also the single bivector i~e1e2 representing time will

now expand to include the three bivectors of a three-dimensional

multivector. Hence a direct implication of representing time as a

bivector in two dimensions is that when expanding the model to

three dimensions, time will now become three dimensional [50–

53], associated with the three rotational degrees of freedom of

three-dimensional space.

Minkowski spacetime diagrams, consisting of a space axis and a

time axis are still applicable, though the time axis no longer

represents a Euclidean time dimension, but simply shows the

algebraic relationship between time as a bivector and space as a

vector. The abstract nature of Minkowski diagrams are indeed

confirmed by the rotation of the coordinate axes for a moving

observer, which are tilted with respect to the original frame when

displayed on the Minkowski diagram, a practice that is purely

formal and not indicating a real rotation of the space or time axes

between the frames [27]. Boosts are conventionally interpreted as

rotations in time in comparison to rotations in space. However this

interpretation needs to be revised from the new perspective of

Clifford multivectors, with spatial rotations seen as bivector

operators of the form eih and boosts as vector operators of the

form ewv̂v.

Figure 2. Multivector model for the electron, consisting of a
light-like particle orbiting at the de Broglie angular frequency
v0 at a radius of r0~lc=2 in the rest frame, and when in motion

described generally by the multivector Pe~Bkizi
cBv0

2c
. Under a

boost, the de Broglie angular frequency will increase to cv0 , giving an
apparent mass increase and time dilation, the electron radius will also
shrink by c, implying length contraction, thus naturally producing the
key results of special relativity.
doi:10.1371/journal.pone.0051756.g002
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There are many definitions of clock time possible, such as the

rotation of the earth on its axis, or the vibration of a quartz crystal,

however the one discussed here, based on the bivector rotation of

particles is perhaps the most fundamental. The arrow of time is

another property of time, however it has been recognized

previously that this arises from the universe being far from

equilibrium in a low entropy thermodynamic state. The steady

progress towards high entropy as required by the second law of

thermodynamics leading to the ‘heat death’ of the universe gives a

perceived direction to time, though this is essentially unrelated to

the definition of time given by the bivector rotation. The definition

of time, as a bivector representing rotation, also allows the difficult

concept of time beginning with the big bang to be more accessible

as it now simply implies the non-existence of rotational degrees of

freedom before the big bang. The creation of time with the big

bang is in agreement with many philosophical conceptions of time,

such as Augustine’s statement, The world was made, not in time, but

simultaneously with time [54].

In summary, this approach from an abstract mathematical

perspective based on the ansatz of spacetime represented by a

Clifford multivector shown in Eq. (10), produces the correct

spacetime metric and Lorentz transformations directly from the

properties of the algebra, and thus similar to Minkowski’s

approach, we explain the two postulates of Einstein based on

the geometrical structure of spacetime. This systematic approach,

is also shown to be advantageous in describing the Lorentz

transformations, in that an exploration of the exponential map of a

multivector, naturally produced rotations, boosts and the Thomas

rotation of frames, and in fact the restricted Lorentz group

represented simply as the multivector exponentials ewv̂veih. This

Lorentz transform operator is generic, as it simultaneously

provides the transformation for the coordinate, momentum-energy

and electromagnetic fields, with all these objects modeled

uniformly as multivectors. This can be compared with the

conventional approach that uses four-vectors to represent coordi-

nates and the momentum-energy but with a different structure, the

antisymmetric field tensor, used to represent the electromagnetic

fields, with necessarily different transformation operations for each

type of object. Hence we see significant benefits with the use of

multivectors as a description of spacetime, which allow the Lorentz

transformations as well as the Dirac equation and Maxwell’s

equations, to arise naturally in a simplified algebraic setting,

without any unnecessary mathematical ‘overheads’, such as

matrices, four-vectors, complex numbers, tensors or metric

structures. It is hoped with the simplified two dimensional

framework using only real numbers and two algebraic entities

e1,e2, that a greater fundamental understanding of quantum

mechanical processes at a fundamental level may be possible. The

minimalist system that we have presented having just sufficient

complexity to describe special relativity is therefore in line with

Einstein’s ideal that: It can scarcely be denied that the supreme goal of all

theory is to make the irreducible basic elements as simple and as few as possible

without having to surrender the adequate representation of a single datum of

experience [55].
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5. Goldberg S (1967) Henri Poincaré and Einstein’s theory of relativity. American
Journal of Physics 35: 934–944.
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