14 research outputs found

    Oxidative Deamination of Tetrahydroanabasine with o

    No full text

    GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin

    No full text
    The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of tubulin and various other GTPases in eukaryotic cells. We have designed a novel inhibitor of FtsZ polymerization based on the structure of the natural substrate GTP. The inhibitory activity of 8-bromoguanosine 5'-triphosphate (BrGTP) was characterized by a coupled assay, which allows simultaneous detection of the extent of polymerization (via light scattering) and GTPase activity (via release of inorganic phosphate). We found that BrGTP acts as a competitive inhibitor of both FtsZ polymerization and GTPase activity with a Ki for GTPase activity of 31.8 +/- 4.1 microM. The observation that BrGTP seems not to inhibit tubulin assembly suggests a structural difference of the GTP-binding pockets of FtsZ and tubuli

    Solid phase synthesis and antiprotozoal evaluation of di- and trisubstituted 5'-carboxamidoadenosine analogues

    No full text
    The rapid increase of resistance to drugs commonly used in the treatment of tropical diseases such as malaria and African sleeping sickness calls for the prompt development of new safe and efficacious drugs. The pathogenic protozoan parasites lack the capability of synthesising purines de novo and they take up preformed purines from their host through various transmembrane transporters. Adenosine derivatives constitute a class of potential therapeutics due to their selective internalisation by these transporters. Automated solid-phase synthesis can speed up the process of lead finding and we pursued the solid-phase synthesis of di- and trisubstituted 5'-carboxamidoadenosine derivatives by using a safety-catch approach. While efforts with Kenner's sulfonamide linker remained fruitless, successful application of the hydrazide safety-catch linker allowed the construction of two representative combinatorial libraries. Their antiprotozoal evaluation identified two compounds with promising activity: N(6)-benzyl-5'-N-phenylcarboxamidoadenosine with an IC(50) value of 0.91 microM against Trypanosoma brucei rhodesiense and N(6)-diphenylethyl-5'-phenylcarboxamidoadenosine with an IC(50) value of 1.8 microM against chloroquine resistant Plasmodium falciparu

    2,N6-Disubstituted Adenosine Analogs with Antitrypanosomal and Antimalarial Activities▿ †

    No full text
    A library of 2,N6-disubstituted adenosine analogs was synthesized and the analogs were tested for their antiprotozoal activities. It was found that 2-methoxy and 2-histamino and N6-m-iodobenzyl substitutions generally produced analogs with low levels of antiprotozoal activity. The best antiplasmodial activity was achieved with large aromatic substitutions, such as N6-2,2-diphenylethyl and naphthylmethyl, which could indicate a mechanism of action through aromatic stacking with heme in the digestive vacuole of Plasmodium spp. The activities against Trypanosoma cruzi trypomastigotes and Leishmania donovani amastigotes were generally low; but several analogs, particularly those with cyclopentylamino substitutions, displayed potent activities against Trypanosoma brucei rhodesiense and T. b. brucei bloodstream forms in vitro. The most active were 2-cyclopentylamino-N6-cyclopentyladenosine (compound NA42) and 2-cyclopentylamino-N6-cyclopentyladenine (compound NA134), with the nucleobase an order of magnitude more potent than the nucleoside, at 26 ± 4 nM. It was determined that the mode of action of these purines was trypanostatic, with the compounds becoming trypanocidal only at much higher concentrations. Those 2,N6-disubstituted purines tested for their effects on purine transport in T. b. brucei displayed at best a moderate affinity for the transporters. It is highly probable that the large hydrophobic substitutions, which bestow high calculated octanol-water coefficient values on the analogs, allow them to diffuse across the membrane. Consistent with this view, the analogs were as effective against a T. b. brucei strain lacking the P2 nucleoside transporter as they were against the parental strain. As the analogs were not toxic to human cell lines, the purine analogs are likely to act on a trypanosome-specific target

    Probing FtsZ and tubulin with C-8-substituted GTP analogs reveals differences in their nucleotide binding sites

    No full text
    11 páginas, 4 figuras, 2 tablas -- PAGS nros. 189-199The cytoskeletal proteins, FtsZ and tubulin, play a pivotal role in prokaryotic cell division and eukaryotic chromosome segregation, respectively. Selective inhibitors of the GTP-dependent polymerization of FtsZ could constitute a new class of antibiotics, while several inhibitors of tubulin are widely used in antiproliferative therapy. In this work, we set out to identify selective inhibitors of FtsZ based on the structure of its natural ligand, GTP. We found that GTP analogs with small hydrophobic substituents at C8 of the nucleobase efficiently inhibit FtsZ polymerization, whereas they have an opposite effect on the polymerization of tubulin. The inhibitory activity of the GTP analogs on FtsZ polymerization allowed us to crystallize FtsZ in complex with C8-morpholino-GTP, revealing the binding mode of a GTP derivative containing a nonmodified triphosphate chainThis work was supported in part by a Netherlands Organization for Scientific Research “Vernieuwingsimpuls” grant (016.001.024, T.d.B.) and grants MEC BFU 2005-00505/BMC and CAM S-BIO-0214-2006 (J.M.A.). A.V.P. acknowledges support by the Avenir grant of Inserm, ACI BCMS of the French Research Ministry (project BCM0210), and equipment grants of the “La Ligue contre le Cancer” (Comité de l'Isère) and the “Association pour la Recherche sur le Cancer” (project 7833). A.J. was funded by the program “Emergence 2004” of the Department de Rhône-AlpesPeer reviewe

    Targeting the parasite’s DNA with methyltriazenyl purine analogs is a safe, selective, and efficacious antitrypanosomal strategy

    Get PDF
    The human and veterinary disease complex known as African trypanosomiasis continues to inflict significant global morbidity, mortality, and economic hardship. Drug resistance and toxic side effects of old drugs call for novel and unorthodox strategies for new and safe treatment options. We designed methyltriazenyl purine prodrugs to be rapidly and selectively internalized by the parasite, after which they disintegrate into a nontoxic and naturally occurring purine nucleobase, a simple triazene-stabilizing group, and the active toxin: a methyldiazonium cation capable of damaging DNA by alkylation. We identified 2-(3-acetyl-3-methyltriazen-1-yl)-6-hydroxypurine (compound 1) as a new lead compound, which showed submicromolar potency against Trypanosoma brucei, with a selectivity index of >500, and it demonstrated a curative effect in animal models of acute trypanosomiasis. We investigated the mechanism of action of this lead compound and showed that this molecule has significantly higher affinity for parasites over mammalian nucleobase transporters, and it does not show cross-resistance with current first-line drugs. Once selectively accumulated inside the parasite, the prodrug releases a DNA-damaging methyldiazonium cation. We propose that ensuing futile cycles of attempted mismatch repair then lead to G2/M phase arrest and eventually cell death, as evidenced by the reduced efficacy of this purine analog against a mismatch repair-deficient (MSH2(-/-)) trypanosome cell line. The observed absence of genotoxicity, hepatotoxicity, and cytotoxicity against mammalian cells revitalizes the idea of pursuing parasite-selective DNA alkylators as a safe chemotherapeutic option for the treatment of human and animal trypanosomiasis

    Identification and development of biphenyl substituted iminosugars as improved dual glucosylceramide synthase/neutral glucosylceramidase inhibitors

    No full text
    This work details the evaluation of a number of N-alkylated deoxynojirimycin derivatives on their merits as dual glucosylceramide synthase/neutral glucosylceramidase inhibitors. Building on our previous work, we synthesized a series of D-gluco and L-ido-configured iminosugars N-modified with a variety of hydrophobic functional groups. We found that iminosugars featuring N-pentyloxymethylaryl substituents are considerably more potent inhibitors of glucosylceramide synthase than their aliphatic counterparts. In a next optimization round, we explored a series of biphenyl-substituted iminosugars of both configurations (D-gluco and L-ido) with the aim to introduce structural features known to confer metabolic stability to drug-like molecules. From these series, two sets of molecules emerge as lead series for further profiling. Biphenyl-substituted L-ido-configured deoxynojirimycin derivatives are selective for glucosylceramidase and the nonlysosomal glucosylceramidase, and we consider these as leads for the treatment of neuropathological lysosomal storage disorders. Their D-gluco-counterparts are also potent inhibitors of intestinal glycosidases, and because of this characteristic, we regard these as the prime candidates for type 2 diabetes therapeutic
    corecore