1,301 research outputs found

    Reducing the number of miscreant tasks executions in a multi-use cluster.

    Get PDF
    Exploiting computational resources within an organisation for more than their primary task offers great benefits – making better use of capital expenditure and provides a pool of computational power. This can be achieved through the deployment of a cycle stealing distributed system, where tasks execute during the idle time on computers. However, if a task has not completed when a computer returns to its primary function the task will be preempted, wasting time (and energy), and is often reallocated to a new resource in an attempt to complete. This becomes exacerbated when tasks are incapable of completing due to excessive execution time or faulty hardware / software, leading to a situation where tasks are perpetually reallocated between computers – wasting time and energy. In this work we investigate techniques to increase the chance of ‘good’ tasks completing whilst curtailing the execution of ‘bad’ tasks. We demonstrate, through simulation, that we could have reduce the energy consumption of our cycle stealing system by approximately 50%

    Simulations of a lattice model of two-headed linear amphiphiles: influence of amphiphile asymmetry

    Full text link
    Using a 2D lattice model, we conduct Monte Carlo simulations of micellar aggregation of linear-chain amphiphiles having two solvophilic head groups. In the context of this simple model, we quantify how the amphiphile architecture influences the critical micelle concentration (CMC), with a particular focus on the role of the asymmetry of the amphiphile structure. Accordingly, we study all possible arrangements of the head groups along amphiphile chains of fixed length N=12N=12 and 16 molecular units. This set of idealized amphiphile architectures approximates many cases of symmetric and asymmetric gemini surfactants, double-headed surfactants and boloform surfactants. Consistent with earlier results, we find that the number of spacer units ss separating the heads has a significant influence on the CMC, with the CMC increasing with ss for s<N/2s<N/2. In comparison, the influence of the asymmetry of the chain architecture on the CMC is much weaker, as is also found experimentally.Comment: 30 pages, 17 fgure

    Transverse Shifts in Paraxial Spinoptics

    Full text link
    The paraxial approximation of a classical spinning photon is shown to yield an "exotic particle" in the plane transverse to the propagation. The previously proposed and observed position shift between media with different refractive indices is modified when the interface is curved, and there also appears a novel, momentum [direction] shift. The laws of thin lenses are modified accordingly.Comment: 3 pages, no figures. One detail clarified, some misprints corrected and references adde

    Reducing the number of miscreant tasks executions in a multi-use cluster

    Get PDF
    Exploiting computational resources within an organisation for more than their primary task offers great benefits – making better use of capital expenditure and provides a pool of computational power. This can be achieved through the deployment of a cycle stealing distributed system, where tasks execute during the idle time on computers. However, if a task has not completed when a computer returns to its primary function the task will be preempted, wasting time (and energy), and is often reallocated to a new resource in an attempt to complete. This becomes exacerbated when tasks are incapable of completing due to excessive execution time or faulty hardware / software, leading to a situation where tasks are perpetually reallocated between computers – wasting time and energy. In this work we investigate techniques to increase the chance of ‘good’ tasks completing whilst curtailing the execution of ‘bad’ tasks. We demonstrate, through simulation, that we could have reduce the energy consumption of our cycle stealing system by approximately 50%

    Modeling the physiological factors that affect drug delivery from a nipple shield delivery system to breastfeeding infants.

    Get PDF
    An apparatus was designed to mimic lactation from a human breast. It was used to determine the influence of milk fat content and flow rate, and suction pulse rate of a breastfeeding infant upon the release of a model compound from a nipple shield delivery system (NSDS). The NSDS would be worn by a mother to deliver drugs and nutrients to her infant during breastfeeding. Sulforhodamine B dye (SB) was used as model compound and formulated as a dispersible tablet to be placed within the NSDS. Increasing suction pulse rate from 30 to 120 pulses/min clearly correlated with increased cumulative release of SB for the same volume of milk passed through the NSDS. No distinct correlation was found between flow rates (1, 5, and 8 mL/min) and SB release, possibly because of competing factors controlling release rate at different flow rates. A highly similar SB release rate into two fat content fluids (2.9 and 4.2 wt %) was observed for identical flow conditions. This proof of concept study outlines a novel method to mimic lactation from a breast, and future studies will lead to effective methods to identify key physiological factors that influence drug release from a NSDS

    Numerical simulations of kink instability in line-tied coronal loops

    Get PDF
    The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D MHD code, Lare3d are presented. We study the evolution of the m=1 kink mode instability in a photospherically line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In particular, we consider the effect of the shear, defined by where is the fieldline twist of the loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the amount of free magnetic energy released by magnetic reconnection

    A biodiversity hypothesis

    Get PDF
    Biodiversity hypothesis states that contact with natural environments enriches the human microbiome, promotes immune balance and protects from allergy and inflammatory disorders. We are protected by two nested layers of biodiversity, microbiota of the outer layer (soil, natural waters, plants, animals) and inner layer (gut, skin, airways). The latter inhabits our body and is colonized from the outer layer. Explosion of human populations along with cultural evolution is profoundly changing our environment and lifestyle. Adaptive immunoregulatory circuits and dynamic homeostasis are at stake in the newly emerged urban surroundings. In allergy, and chronic inflammatory disorders in general, exploring the determinants of immunotolerance is the key for prevention and more effective treatment. Loss of immunoprotective factors, derived from nature, is a new kind of health risk poorly acknowledged until recently. The paradigm change has been implemented in the Finnish allergy programme (2008-2018), which emphasized tolerance instead of avoidance. The first results are promising, as allergy burden has started to reduce. The rapidly urbanizing world is facing serious biodiversity loss with global warming, which are interconnected. Biodiversity hypothesis of health and disease has societal impact, for example, on city planning, food and energy production and nature conservation. It has also a message for individuals for health and well-being: take nature close, to touch, eat, breathe, experience and enjoy. Biodiverse natural environments are dependent on planetary health, which should be a priority also among health professionals.Peer reviewe
    • …
    corecore