53 research outputs found

    N=2 central charge superspace and a minimal supergravity multiplet

    Get PDF
    We extend the notion of central charge superspace to the case of local supersymmetry. Gauged central charge transformations are identified as diffeomorphisms at the same footing as space-time diffeomorphisms and local supersymmetry transformations. Given the general structure we then proceed to the description of a particular vector-tensor supergravity multiplet of 24+24 components, identified by means of rather radical constraints

    Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism

    Get PDF
    The ligation of DNA double-strand breaks in the process of non-homologous end-joining (NHEJ) is accomplished by a heterodimeric enzyme complex consisting of DNA ligase IV and an associated non-catalytic factor. This DNA ligase also accounts for the fatal joining of unprotected telomere ends. Hence, its activity must be tightly controlled. Here, we describe interactions of the DNA ligase IV-associated proteins Lif1p and XRCC4 of yeast and human with the putatively orthologous G-patch proteins Ntr1p/Spp382p and NTR1/TFIP11 that have recently been implicated in mRNA splicing. These conserved interactions occupy the DNA ligase IV-binding sites of Lif1p and XRCC4, thus preventing the formation of an active enzyme complex. Consistently, an excess of Ntr1p in yeast reduces NHEJ efficiency in a plasmid ligation assay as well as in a chromosomal double-strand break repair (DSBR) assay. Both yeast and human NTR1 also interact with PinX1, another G-patch protein that has dual functions in the regulation of telomerase activity and telomere stability, and in RNA processing. Like PinX1, NTR1 localizes to telomeres and associates with nucleoli in yeast and human cells, suggesting a function in localized control of DSBR

    Everolimus in Metastatic Renal Cell Carcinoma after Failure of Initial Vascular Endothelial Growth Factor Receptor-Tyrosine Kinase Inhibitor (VEGFr-TKI) Therapy: Results of an Interim Analysis of a Non-Interventional Study

    Get PDF
    Background: Everolimus is approved for treatment of anti-vascularendothelial growth factor (VEGF)-refractory patients with metastaticrenal cell carcinoma (mRCC). Clinical trials rarely mirror treatmentreality. Thus, a broader evaluation of everolimus is valuable forroutine use. Patients and Methods: A German multicenternon-interventional study documented mRCC patients starting everolimusafter failure of initial VEGF-targeted therapy. Primary endpoint waseffectiveness, defined as time to progression (TIP) according toinvestigator assessment (time from first dose to progression). Results:Of 382 documented patients, 196 were included in this interim analysis

    MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis

    Get PDF
    Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Differential roles for Chk1 and FANCD2 in ATR-mediated signalling for psoralen photoactivation-induced senescence

    No full text
    Cellular senescence is a stress-inducible, naturally irreversible cell cycle arrest, which is likely linked with ageing. Premature ageing of the skin is a prominent side effect of psoralen photoactivation, which is used for the treatment of various skin disorders. Previously, we have shown that DNA interstrand crosslink formation by photoactivated psoralens induces a senescent phenotype in primary fibroblasts that is mediated by Ataxia telangiectasia-mutated and Rad3-related (ATR) kinase. Checkpoint kinase 1 (Chk1) initiates cell cycle checkpoints, and FANCD2 is known to be involved in DNA damage-induced S-phase arrest and crosslink repair. In this study, we examined a role for Chk1 and FANCD2 as downstream effectors of ATR in senescence signalling. We demonstrate that Chk1 and FANCD2 are long-lastingly activated after psoralen photoactivation. Separate and combined reduction in Chk1 and FANCD2 expression by small interfering RNA (siRNA) preceding irradiation partly prevented the initiation of the senescence-like phenotype, whereas siRNA (Chk1 and FANCD2) transfection of senesced fibroblasts released cells from growth arrest. We observed that Chk1 and FANCD2 signal equally and additively for senescence induction, while Chk1 is predominantly responsible for maintaining persistent cell cycle arrest. In conclusion, Chk1 and FANCD2 function downstream of ATR in a non-redundant manner for the establishment and maintenance of psoralen photoactivation-induced senescence
    corecore