1,107 research outputs found
NASA metrology information system: A NEMS subsystem
the NASA Metrology Information Systems (NMIS) is being developed as a standardized tool in managing the NASA field Center's instrument calibration programs. This system, as defined by the NASA Metrology and Calibration Workshop, will function as a subsystem of the newly developed NASA Equipment Management System (NEMS). The Metrology Information System is designed to utilize and update applicable NEMS data fields for controlled property and to function as a stand alone system for noncontrolled property. The NMIS provides automatic instrument calibration recall control, instrument historical performance data storage and analysis, calibration and repair labor and parts cost data, and instrument user and location data. Nineteen standardized reports were developed to analyze calibration system operations
Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program
Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset
Comparative analysis of miRNAs and their targets across four plant species
BACKGROUND: MicroRNA (miRNA) mediated regulation of gene expression has been recognized as a major posttranscriptional regulatory mechanism also in plants. We performed a comparative analysis of miRNAs and their respective gene targets across four plant species: Arabidopsis thaliana (Ath), Medicago truncatula(Mtr), Brassica napus (Bna), and Chlamydomonas reinhardtii (Cre). RESULTS: miRNAs were obtained from mirBase with 218 miRNAs for Ath, 375 for Mtr, 46 for Bna, and 73 for Cre, annotated for each species respectively. miRNA targets were obtained from available database annotations, bioinformatic predictions using RNAhybrid as well as predicted from an analysis of mRNA degradation products (degradome sequencing) aimed at identifying miRNA cleavage products. On average, and considering both experimental and bioinformatic predictions together, every miRNA was associated with about 46 unique gene transcripts with considerably variation across species. We observed a positive and linear correlation between the number miRNAs and the total number of transcripts across different plant species suggesting that the repertoire of miRNAs correlates with the size of the transcriptome of an organism. Conserved miRNA-target pairs were found to be associated with developmental processes and transcriptional regulation, while species-specific (in particular, Ath) pairs are involved in signal transduction and response to stress processes. Conserved miRNAs have more targets and higher expression values than non-conserved miRNAs. We found evidence for a conservation of not only the sequence of miRNAs, but their expression levels as well. CONCLUSIONS: Our results support the notion of a high birth and death rate of miRNAs and that miRNAs serve many species specific functions, while conserved miRNA are related mainly to developmental processes and transcriptional regulation with conservation operating at both the sequence and expression level
Association between AIRE gene polymorphism and rheumatoid arthritis: a systematic review and meta-analysis of case-control studies.
Autoimmune regulator (AIRE) is a transcription factor that functions as a novel player in immunological investigations. In the thymus, it has a pivotal role in the negative selection of naive T-cells during central tolerance. Experimental studies have shown that single nucleotide polymorphism (SNP) alters transcription of the AIRE gene. SNPs thereby provide a less efficient negative selection, propagate higher survival of autoimmune T-cells, and elevate susceptibility to autoimmune diseases. To date, only rheumatoid arthritis (RA) has been analysed by epidemiological investigations in relation to SNPs in AIRE. In our meta-analysis, we sought to encompass case-control studies and confirm that the association between SNP occurrence and RA. After robust searches of Embase, PubMed, Cochrane Library, and Web of Science databases, we found 19 articles that included five independent studies. Out of 11 polymorphisms, two (rs2075876, rs760426) were common in the five case-control studies. Thus, we performed a meta-analysis for rs2075876 (7145 cases and 8579 controls) and rs760426 (6696 cases and 8164 controls). Our results prove that rs2075876 and rs760426 are significantly associated with an increased risk of RA in allelic, dominant, recessive, codominant heterozygous, and codominant homozygous genetic models. These findings are primarily based on data from Asian populations
Impact of geriatric comorbidity and polypharmacy on cholinesterase inhibitors prescribing in dementia
<p>Abstract</p> <p>Background</p> <p>Although most guidelines recommend the use of cholinesterase inhibitors (ChEIs) for mild to moderate Alzheimer's Disease, only a small proportion of affected patients receive these drugs. We aimed to study if geriatric comorbidity and polypharmacy influence the prescription of ChEIs in patients with dementia in Germany.</p> <p>Methods</p> <p>We used claims data of 1,848 incident patients with dementia aged 65 years and older. Inclusion criteria were first outpatient diagnoses for dementia in at least three of four consecutive quarters (incidence year). Our dependent variable was the prescription of at least one ChEI in the incidence year. Main independent variables were polypharmacy (defined as the number of prescribed medications categorized into quartiles) and measures of geriatric comorbidity (levels of care dependency and 14 symptom complexes characterizing geriatric patients). Data were analyzed by multivariate logistic regression.</p> <p>Results</p> <p>On average, patients were 78.7 years old (47.6% female) and received 9.7 different medications (interquartile range: 6-13). 44.4% were assigned to one of three care levels and virtually all patients (92.0%) had at least one symptom complex characterizing geriatric patients. 13.0% received at least one ChEI within the incidence year. Patients not assigned to the highest care level were more likely to receive a prescription (e.g., no level of care dependency vs. level 3: adjusted Odds Ratio [OR]: 5.35; 95% CI: 1.61-17.81). The chance decreased with increasing numbers of symptoms characterizing geriatric patients (e.g., 0 vs. 5+ geriatric complexes: OR: 4.23; 95% CI: 2.06-8.69). The overall number of prescribed medications had no influence on ChEI prescription and a significant effect of age could only be found in the univariate analysis. Living in a rural compared to an urban environment and contacts to neurologists or psychiatrists were associated with a significant increase in the likelihood of receiving ChEIs in the multivariate analysis.</p> <p>Conclusions</p> <p>It seems that not age as such but the overall clinical condition of a patient including care dependency and geriatric comorbidities influences the process of decision making on prescription of ChEIs.</p
Islet Formation during the Neonatal Development in Mice
The islet of Langerhans is a unique micro-organ within the exocrine pancreas, which is composed of insulin-secreting beta-cells, glucagon-secreting alpha-cells, somatostatin-secreting delta-cells, pancreatic polypeptide-secreting PP cells and ghrelin-secreting epsilon-cells. Islets also contain non-endocrine cell types such as endothelial cells. However, the mechanism(s) of islet formation is poorly understood due to technical difficulties in capturing this dynamic event in situ. We have developed a method to monitor beta-cell proliferation and islet formation in the intact pancreas using transgenic mice in which the beta-cells are specifically tagged with a fluorescent protein. Endocrine cells proliferate contiguously, forming branched cord-like structures in both embryos and neonates. Our study has revealed long stretches of interconnected islets located along large blood vessels in the neonatal pancreas. Alpha-cells span the elongated islet-like structures, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. We propose that islet formation occurs by a process of fission following contiguous endocrine cell proliferation, rather than by local aggregation or fusion of isolated beta-cells and islets. Mathematical modeling of the fission process in the neonatal islet formation is also presented
Biological variability dominates and influences analytical variance in HPLC-ECD studies of the human plasma metabolome
<p>Abstract</p> <p>Background</p> <p>Biomarker-based assessments of biological samples are widespread in clinical, pre-clinical, and epidemiological investigations. We previously developed serum metabolomic profiles assessed by HPLC-separations coupled with coulometric array detection that can accurately identify <it>ad libitum </it>fed and caloric-restricted rats. These profiles are being adapted for human epidemiology studies, given the importance of energy balance in human disease.</p> <p>Methods</p> <p>Human plasma samples were biochemically analyzed using HPLC separations coupled with coulometric electrode array detection.</p> <p>Results</p> <p>We identified these markers/metabolites in human plasma, and then used them to determine which human samples represent blinded duplicates with 100% accuracy (N = 30 of 30). At least 47 of 61 metabolites tested were sufficiently stable for use even after 48 hours of exposure to shipping conditions. Stability of some metabolites differed between individuals (N = 10 at 0, 24, and 48 hours), suggesting the influence of some biological factors on parameters normally considered as analytical.</p> <p>Conclusion</p> <p>Overall analytical precision (mean median CV, ~9%) and total between-person variation (median CV, ~50–70%) appear well suited to enable use of metabolomics markers in human clinical trials and epidemiological studies, including studies of the effect of caloric intake and balance on long-term cancer risk.</p
Sucrose Monoester Micelles Size Determined by Fluorescence Correlation Spectroscopy (FCS)
One of the several uses of sucrose detergents, as well as other micelle forming detergents, is the solubilization of different membrane proteins. Accurate knowledge of the micelle properties, including size and shape, are needed to optimize the surfactant conditions for protein purification and membrane characterization. We synthesized sucrose esters having different numbers of methylene subunits on the substituent to correlate the number of methylene groups with the size of the corresponding micelles. We used Fluorescence Correlation Spectroscopy (FCS) and two photon excitation to determine the translational D of the micelles and calculate their corresponding hydrodynamic radius, Rh. As a fluorescent probe we used LAURDAN (6-dodecanoyl-2-dimethylaminonaphthalene), a dye highly fluorescent when integrated in the micelle and non-fluorescent in aqueous media. We found a linear correlation between the size of the tail and the hydrodynamic radius of the micelle for the series of detergents measured
- …