184 research outputs found

    Viral hijacking of cellular ubiquitination pathways as an anti-innate immunity strategy.

    Get PDF
    International audienceViruses are obligate parasites of host cells. Virus-host coevolution has selected virus for growth despite antiviral defenses set up by hosting cells and organisms. Ubiquitin conjugation onto proteins, through a cascade of reactions mediated by E1 (ubiquitin-activating enzyme) and E2 and E3 (ubiquitin- conjugating ligases), is one of the major regulatory systems that, in particular, tightly controls the concentration of cellular proteins by sorting them for degradation. The combined diversity of E2 and E3 ligases ensures the selective/specific ubiquitination of a large number of protein substrates within the cell interior. Therefore it is not surprising that several viruses encode proteins with E3 ubiquitin ligase activities that target cellular proteins playing a key role in innate antiviral mechanisms

    Selection of single-chain antibodies that specifically interact with vesicular stomatitis virus (VSV) nucleocapsid and inhibit viral RNA synthesis.

    Get PDF
    International audienceThe RNA genome of non-segmented negative-strand RNA viruses is completely covered by the nucleoprotein (N) forming a ribonucleoprotein complex, the nucleocapsid. The nucleocapsid functions as the template for viral RNA synthesis that is mediated by a viral RNA-dependent RNA polymerase. It is postulated that the selection of molecules that would specifically target the nucleocapsid and thus inhibit the viral polymerase activity could represent a common approach to block negative-strand RNA viruses. Two single-chain antibody fragments (scFv) that were selected using the phage display technology and interacted specifically with vesicular stomatitis virus (VSV) nucleocapsid were characterized. The two recombinant antibodies recognize a conformational epitope on the nucleocapsid and immunoprecipitate specifically nucleocapsids from infected cell extracts. Both antibodies have a strong inhibitory effect on VSV transcription activity in vitro. Thus, they represent starting molecules for future development of in vivo viral RNA synthesis inhibitors

    Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5

    Get PDF
    International audienceAbstractBackgroundThe cytoplasmic RIG-like receptors are responsible for the early detection of viruses and other intracellular microbes by activating the innate immune response mediated by type I interferons (IFNs). RIG-I and MDA5 detect virus-specific RNA motifs with short 5′-tri/diphosphorylated, blunt-end double-stranded RNA (dsRNA) and >0.5–2 kb long dsRNA as canonical agonists, respectively. However, in vitro, they can bind to many RNA species, while in cells there is an activation threshold. As SF2 helicase/ATPase family members, ATP hydrolysis is dependent on co-operative RNA and ATP binding. Whereas simultaneous ATP and cognate RNA binding is sufficient to activate RIG-I by releasing autoinhibition of the signaling domains, the physiological role of the ATPase activity of RIG-I and MDA5 remains controversial.ResultsA cross-analysis of a rationally designed panel of RNA binding and ATPase mutants and truncated receptors, using type I IFN promoter activation as readout, allows us to refine our understanding of the structure-function relationships of RIG-I and MDA5. RNA activation of RIG-I depends on multiple critical RNA binding sites in its helicase domain as confirmed by functional evidence using novel mutations. We found that RIG-I or MDA5 mutants with low ATP hydrolysis activity exhibit constitutive activity but this was fully reverted when associated with mutations preventing RNA binding to the helicase domain. We propose that the turnover kinetics of the ATPase domain enables the discrimination of self/non-self RNA by both RIG-I and MDA5. Non-cognate, possibly self, RNA binding would lead to fast ATP turnover and RNA disassociation and thus insufficient time for the caspase activation and recruitment domains (CARDs) to promote downstream signaling, whereas tighter cognate RNA binding provides a longer time window for downstream events to be engaged.ConclusionsThe exquisite fine-tuning of RIG-I and MDA5 RNA-dependent ATPase activity coupled to CARD release allows a robust IFN response from a minor subset of non-self RNAs within a sea of cellular self RNAs. This avoids the eventuality of deleterious autoimmunity effects as have been recently described to arise from natural gain-of-function alleles of RIG-I and MDA5

    Refined study of the interaction between HIV-1 p6 late domain and ALIX

    Get PDF
    The interaction between the HIV-1 p6 late budding domain and ALIX, a class E vacuolar protein sorting factor, was explored by using the yeast two-hybrid approach. We refined the ALIX binding site of p6 as being the leucine triplet repeat sequence (Lxx)4 (LYPLTSLRSLFG). Intriguingly, the deletion of the C-terminal proline-rich region of ALIX prevented detectable binding to p6. In contrast, a four-amino acid deletion in the central hinge region of p6 increased its association with ALIX as shown by its ability to bind to ALIX lacking the proline rich domain. Finally, by using a random screening approach, the minimal ALIX391–510 fragment was found to specifically interact with this p6 deletion mutant. A parallel analysis of ALIX binding to the late domain p9 from EIAV revealed that p6 and p9, which exhibit distinct ALIX binding motives, likely bind differently to ALIX. Altogether, our data support a model where the C-terminal proline-rich domain of ALIX allows the access of its binding site to p6 by alleviating a conformational constraint resulting from the presence of the central p6 hinge

    Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5

    Get PDF
    International audienceRIG-I and MDA5 sense virus-derived short 5'ppp blunt-ended or long dsRNA, respectively, causing interferon production. Non-signaling LGP2 appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. Co-crystal structures of chicken (ch) LGP2 with dsRNA display a fully or semi-closed conformation depending on the presence or absence of nucleotide. LGP2 caps blunt, 3' or 5' overhang dsRNA ends with 1 bp longer overall footprint than RIG-I. Structures of 1:1 and 2:1 complexes of chMDA5 with short dsRNA reveal head-to-head packing rather than the polar head-to-tail orientation described for long filaments. chLGP2 and chMDA5 make filaments with a similar axial repeat, although less co-operatively for chLGP2. Overall, LGP2 resembles a chimera combining a MDA5-like helicase domain and RIG-I like CTD supporting both stem and end binding. Functionally, RNA binding is required for LGP2-mediated enhancement of MDA5 activation. We propose that LGP2 end-binding may promote nucleation of MDA5 oligomerization on dsRNA

    Health reform requires policy capacity

    Get PDF
    Health reform requires policy capacity Pierre-Gerlier Forest 1 * , Jean-Louis Denis 2 , Lawrence D. Brown 3 , David Helms 4 Abstract Among the many reasons that may limit the adoption of promising reform ideas, policy capacity is the least recognized. The concept itself is not widely understood. Although policy capacity is concerned with the gathering of information and the formulation of options for public action in the initial phases of policy consultation and development, it also touches on all stages of the policy process, from the strategic identification of a problem to the actual development of the policy, its formal adoption, its implementation, and even further, its evaluation and continuation or modification. Expertise in the form of policy advice is already widely available in and to public administrations, to well-established professional organizations like medical societies and, of course, to large private-sector organizations with commercial or financial interests in the health sector. We need more health actors to join the fray and move from their traditional position of advocacy to a fuller commitment to the development of policy capacity, with all that it entails in terms of leadership and social responsibilit

    The interaction between the measles virus nucleoprotein and the Interferon Regulator Factor 3 relies on a specific cellular environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genome of measles virus consists of a non-segmented single-stranded RNA molecule of negative polarity, which is encapsidated by the viral nucleoprotein (N) within a helical nucleocapsid. The N protein possesses an intrinsically disordered C-terminal domain (aa 401–525, N<sub>TAIL</sub>) that is exposed at the surface of the viral nucleopcapsid. Thanks to its flexible nature, N<sub>TAIL </sub>interacts with several viral and cellular partners. Among these latter, the Interferon Regulator Factor 3 (IRF-3) has been reported to interact with N, with the interaction having been mapped to the regulatory domain of IRF-3 and to N<sub>TAIL</sub>. This interaction was described to lead to the phosphorylation-dependent activation of IRF-3, and to the ensuing activation of the pro-immune cytokine RANTES gene.</p> <p>Results</p> <p>After confirming the reciprocal ability of IRF-3 and N to be co-immunoprecipitated in 293T cells, we thoroughly investigated the N<sub>TAIL</sub>-IRF-3 interaction using a recombinant, monomeric form of the regulatory domain of IRF-3. Using a large panel of spectroscopic approaches, including circular dichroism, fluorescence spectroscopy, nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, we failed to detect any direct interaction between IRF-3 and either full-length N or N<sub>TAIL </sub>under conditions where these latter interact with the C-terminal X domain of the viral phosphoprotein. Furthermore, such interaction was neither detected in <it>E. coli </it>nor in a yeast two hybrid assay.</p> <p>Conclusion</p> <p>Altogether, these data support the requirement for a specific cellular environment, such as that provided by 293T human cells, for the N<sub>TAIL</sub>-IRF-3 interaction to occur. This dependence from a specific cellular context likely reflects the requirement for a human or mammalian cellular co-factor.</p

    Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.

    Get PDF
    International audienceBACKGROUND: Double stranded RNA (dsRNA) is widely accepted as an RNA motif recognized as a danger signal by the cellular sentries. However, the biology of non-segmented negative strand RNA viruses, or Mononegavirales, is hardly compatible with the production of such dsRNA. METHODOLOGY AND PRINCIPAL FINDINGS: During measles virus infection, the IFN-beta gene transcription was found to be paralleled by the virus transcription, but not by the virus replication. Since the expression of every individual viral mRNA failed to activate the IFN-beta gene, we postulated the involvement of the leader RNA, which is a small not capped and not polyadenylated RNA firstly transcribed by Mononegavirales. The measles virus leader RNA, synthesized both in vitro and in vivo, was efficient in inducing the IFN-beta expression, provided that it was delivered into the cytosol as a 5'-trisphosphate ended RNA. The use of a human cell line expressing a debilitated RIG-I molecule, together with overexpression studies of wild type RIG-I, showed that the IFN-beta induction by virus infection or by leader RNA required RIG-I to be functional. RIG-I binds to leader RNA independently from being 5-trisphosphate ended; while a point mutant, Q299A, predicted to establish contacts with the RNA, fails to bind to leader RNA. Since the 5'-triphosphate is required for optimal RIG-I activation but not for leader RNA binding, our data support that RIG-I is activated upon recognition of the 5'-triphosphate RNA end. CONCLUSIONS/SIGNIFICANCE: RIG-I is proposed to recognize Mononegavirales transcription, which occurs in the cytosol, while scanning cytosolic RNAs, and to trigger an IFN response when encountering a free 5'-triphosphate RNA resulting from a mislocated transcription activity, which is therefore considered as the hallmark of a foreign invader
    • …
    corecore