338 research outputs found

    The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes

    Get PDF
    25 pagesInternational audienceA recurrent question in ecology is the influence of environmental factors, particularly nutrients and climatic variables, on community structure and functioning, and their interaction with internal community processes (e.g. competition). Perialpine lakes have been subject to two main kinds of human-induced changes over the last fifty years: eutrophication - reoligotrophication, represented by lake-specific changes in total phosphorus concentration (TP), and long-term global climatic change, captured by average winter temperature (AWT). Changes in fish communities (abundance of seven species from fishery data) in 11 Perialpine lakes during 31 years (1970-2000) were investigated in relation to variation in TP and AWT using models incorporating the effects of fish maturation age, and potentially discriminating effects on adult survival and recruitment. We show that phosphorus concentration affects fish abundance in species-specific ways. These effects are mediated by recruitment rather than by adult survival. Phosphorus effects are probably modulated by interspecific interactions, as increasing TP enhances total community biomass, which in turn is either positively or negatively associated with species abundance depending on species position in trophic chains. Climatic change has very little effect on fish abundances, which is not consistent with the prediction of larger changes in species near their southern distribution boundary. We propose several hypotheses to account for those findings, and place our study in the wider framework of community ecology

    Decadal changes in water temperature and ecological time-series in Lake Geneva, Europe - detecting relationships with the subtropical Atlantic climate variability

    Get PDF
    We investigated connections between subtropical Atlantic climate variability, atmospheric conditions in the European Alpine region (45 to 47° N and 5 to 8° E) and the interannual variability of the thermal conditions in the largest body of freshwater in Western Europe (Lake Geneva). The long-term water temperature was related to climate variability by means of a multivariate regression model. Results revealed atmospheric connections that have been elusive so far, and showed that over the period from 1959 to 2000, summer thermal conditions in Lake Geneva appear tightly linked to the long-term variability of the subtropical Atlantic climate. The multivariate model revealed high skills and tight correlations, which suggest the possibility of assessing future thermal changes in Lake Geneva from the Atlantic climate variability. The implications of such climatic forcing on the functioning of the pelagic ecosystem in Lake Geneva were illustrated by analysing the long-term changes in abundance of the summer-dominant carnivorous cladocerans Bythotrephes longimanus and Leptodora kindtii during the period 1974 to 2000. Again, the multivariate model revealed high skills and excellent correlations between the interannual changes in abundance of these species and the variability of summer climate. Our approach provides a general understanding of the interrelations between large- and regional-scale climates, local environmental conditions and the ecological responses in Lake Geneva during summer, and is therefore applicable to other retrospective studies

    Seasonal and interannual variability of cladoceran communities in two peri-alpine lakes: uncoupled response to the 2003 heat wave

    Get PDF
    Seasonal and interannual dynamics of cladoceran species were analyzed during the period 1995–2003 in two deep peri-alpine lakes morphologically different but subjected to similar regional climatic forcing. The seasonal succession of cladoceran species was characterized and the impact of extreme climatic events on the annual pattern of species succession was assessed. Using a multivariate method, we show that the cladoceran species display marked seasonality patterns that differed in the two lakes. The differences observed between the lakes were driven by their trophic state, the plankton species composition and the abundance of predators. We show that the sensitivity of the annual pattern of species succession to extreme weather changes, illustrated by the 2003 heat wave, differs markedly in these two lakes. In Lake Annecy, the annual pattern of cladoceran succession observed in 2003 is not different from the one usually observed. In contrast, in Lake Geneva, the annual pattern recorded in 2003 is unusual and characterized by the maintenance of herbivorous cladocera during summer. These findings underline the need to consider the morphology of lakes and trophic state in the assessment of ecological responses to global warming. Our results contribute to the debate about the predictability of the impacts of climate change on aquatic ecosystems, and their extrapolation from one site to another

    La truite commune (Salmo trutta L.) dans le Redon, un petit affluent du lac Léman : caractéristiques des géniteurs de truite de lac (1983-1988) et premières données sur l'impact des relâchers d'alevins nourris

    Full text link
    L'étude précise les caractéristiques (âge, croissance) des géniteurs de truite de lac échantillonnés cinq années consécutives sur le Redon, un petit affluent (10 km) du lac Léman (58.240 ha). Les jeunes géniteurs de 2 ou 3 ans représentent 73 % des mâles contre seulement 33 % des femelles. L'examen des écailles montre l'existence de 1 (type 1 : 56 %), 2 (type 2 : 43%) ou 3 ans (type 3 :1 %) de croissance initiale lente "type rivière". La longueur totale rétromesurée à 1 an est significativement plus élevée (129 mm) pour les géniteurs de type 1 que celle (100 mm) des géniteurs de type 2. Un lot de 6.000 alevins, nourris en pisciculture jusqu'à 4 cm, issus de géniteurs de truite de lac et marqués, a été déversé en août 1983 dans la partie aval du Redon. Les géniteurs de truites de lac issus de ce petit lot représentaient une part importante (46 % des femelles et 22 % des mâles) de la cohorte d'adultes correspondante remontant frayer dans le Redon

    Fishery-induced selection on an Alpine whitefish: quantifying genetic and environmental effects on individual growth rate

    Get PDF
    Size-selective fishing, environmental changes and reproductive strategies are expected to affect life-history traits such as the individual growth rate. The relative contribution of these factors is not clear, particularly whether size-selective fishing can have a substantial impact on the genetics and hence on the evolution of individual growth rates in wild populations. We analysed a 25-year monitoring survey of an isolated population of the Alpine whitefish Coregonus palaea. We determined the selection differentials on growth rate, the actual change of growth rate over time and indicators of reproductive strategies that may potentially change over time. The selection differential can be reliably estimated in our study population because almost all the fish are harvested within their first years of life, i.e. few fish escape fishing mortality. We found a marked decline in average adult growth rate over the 25 years and a significant selection differential for adult growth, but no evidence for any linear change in reproductive strategies over time. Assuming that the heritability of growth in this whitefish corresponds to what was found in other salmonids, about a third of the observed decline in growth rate would be linked to fishery-induced evolution. Size-selective fishing seems to affect substantially the genetics of individual growth in our study population

    Effects of climate and land-use changes on fish catches across lakes at a global scale

    Get PDF
    Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security

    Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes

    Get PDF
    Fish play a key role in the trophic dynamics of lakes. With climate warming, complex changes in fish assemblage structure may be expected owing to direct effects of temperature and indirect effects operating through eutrophication, water level changes, stratification and salinisation. We reviewed published and new long-term (10-100 years) fish data series from 24 European lakes (area: 0.04-5,648 km(2); mean depth: 1-177 m; a north-south gradient from Sweden to Spain). Along with an annual temperature increase of about 0.15-0.3A degrees C per decade profound changes have occurred in either fish assemblage composition, body size and/or age structure during recent decades and a shift towards higher dominance of eurythermal species. These shifts have occurred despite a reduction in nutrient loading in many of the lakes that should have benefited the larger-sized individuals and the fish species typically inhabiting cold-water, low-nutrient lakes. The cold-stenothermic Arctic charr has been particularly affected and its abundance has decreased in the majority of the lakes where its presence was recorded. The harvest of cool-stenothermal brown trout has decreased substantially in two southern lakes. Vendace, whitefish and smelt show a different response depending on lake depth and latitude. Perch has apparently been stimulated in the north, with stronger year classes in warm years, but its abundance has declined in the southern Lake Maggiore, Italy. Where introduced, roach seems to take advantage of the higher temperature after years of low population densities. Eurythermal species such as common bream, pike-perch and/or shad are apparently on the increase in several of the lakes. The response of fish to the warming has been surprisingly strong and fast in recent decades, making them ideal sentinels for detecting and documenting climate-induced modifications of freshwater ecosystems
    corecore