45 research outputs found

    The Development of CERVIS: Cervical cancer Early Response Visual Identification System

    Get PDF
    The goal of CERVIS is to make a substantial, positive impact in the cervical cancer diagnostic space through the development of a minimally invasive, cost effective solution that enables women in low-resource settings to test for cervical cancer on a frugal and effective platform. In the developed world, there are a variety of options that can aid in early detection, including pap smears. However, due to the high cost and laboratory requirements that accompany this procedure, women in low-resource settings rarely have access to this preventative care or regular screenings for cervical cancer. Using new research about the changes in the vaginal microbiome, we aim to create a frugal, visual diagnostic screening tool for early stage cervical cancer as an alternative to the existing expensive, invasive, and clinic-dependent methods. Outcomes will be measured by partnering with a Kenyan NGO to collect data from several clinics

    Exploring Cosmic Origins with CORE: Cosmological Parameters

    Get PDF
    We forecast the main cosmological parameter constraints achievable with theCORE space mission which is dedicated to mapping the polarisation of the CosmicMicrowave Background (CMB). CORE was recently submitted in response to ESA'sfifth call for medium-sized mission proposals (M5). Here we report the resultsfrom our pre-submission study of the impact of various instrumental options, inparticular the telescope size and sensitivity level, and review the great,transformative potential of the mission as proposed. Specifically, we assessthe impact on a broad range of fundamental parameters of our Universe as afunction of the expected CMB characteristics, with other papers in the seriesfocusing on controlling astrophysical and instrumental residual systematics. Inthis paper, we assume that only a few central CORE frequency channels areusable for our purpose, all others being devoted to the cleaning ofastrophysical contaminants. On the theoretical side, we assume LCDM as ourgeneral framework and quantify the improvement provided by CORE over thecurrent constraints from the Planck 2015 release. We also study the jointsensitivity of CORE and of future Baryon Acoustic Oscillation and Large ScaleStructure experiments like DESI and Euclid. Specific constraints on the physicsof inflation are presented in another paper of the series. In addition to thesix parameters of the base LCDM, which describe the matter content of aspatially flat universe with adiabatic and scalar primordial fluctuations frominflation, we derive the precision achievable on parameters like thosedescribing curvature, neutrino physics, extra light relics, primordial heliumabundance, dark matter annihilation, recombination physics, variation offundamental constants, dark energy, modified gravity, reionization and cosmicbirefringence. (ABRIDGED

    L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    Get PDF
    Planck Collaboration.The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 267934.Peer Reviewe

    Physics-based modelling and optimisation of shimming operations in the assembly process of aircraft skin panels

    No full text
    Assembly process of aeronautical skin panels deals with large, thin and compliant components, which are usually joined with rivets. A leading challenge is the control of part-topart gaps prior to riveting operation, which must be maintained below tight design specification limits to avoid xcessive pretensions of the rivets which, if exceeded, impair the durability of the whole skin assembly. Gaps are compensated by number of time consuming and costly manual inspection-repair quality loops, which involve measuring gaps, disassembling parts, adding be-spoke shims, re-assembling parts. This paper proposes a novel methodology to support the inspection-repair quality loops with the aim to model and optimise the shape of the shims with the ultimate goal of reducing/eliminating manual and trial-and-error measurements as per today best practice. The methodology will be discussed in two steps: (1) physicsbased variation simulation to model generation and propagation of dimensional and geometrical variations (by using scanning data o morphing mesh model) during multi-stage assembly operations; (2) virtual shimming simulator to model and optimise shimming condition between parts being assembled. The proposed methodology is presented and validated using the assembly process of the vertical stabiliser for commercial aircrafts
    corecore