558 research outputs found

    Toxicity of mycotoxins for the rat pulmonary macrophage in vitro.

    Get PDF
    The presence of mycotoxins in grains is well documented. Workers in grain handling occupations are commonly exposed to grain dust aerosols. Work in our laboratory has shown that T-2 toxin is highly toxic to rat alveolar macrophages in vitro, causing loss of viability, release of radiolabeled chromium, inhibition of macromolecular synthesis, inhibition of phagocytosis, and inhibition of macrophage activation. Similarly, patulin caused a significant release of radiolabeled chromium, decrease in ATP levels, significant inhibition of protein and RNA synthesis, and inhibition of phagocytosis. The data show that both T-2 toxin and patulin are highly toxic to rat alveolar macrophages in vitro. The data further suggest that the presence of these mycotoxins in airborne respirable dust might present a hazard to exposed workers

    AllerCatPro 2.0: a web server for predicting protein allergenicity potential

    Get PDF
    Proteins in food and personal care products can pose a risk for an immediate immunoglobulin E (IgE)-mediated allergic response. Bioinformatic tools can assist to predict and investigate the allergenic potential of proteins. Here we present AllerCatPro 2.0, a web server that can be used to predict protein allergenicity potential with better accuracy than other computational methods and new features that help assessors making informed decisions. AllerCatPro 2.0 predicts the similarity between input proteins using both their amino acid sequences and predicted 3D structures towards the most comprehensive datasets of reliable proteins associated with allergenicity. These datasets currently include 4979 protein allergens, 162 low allergenic proteins, and 165 autoimmune allergens with manual expert curation from the databases of WHO/International Union of Immunological Societies (IUIS), Comprehensive Protein Allergen Resource (COMPARE), Food Allergy Research and Resource Program (FARRP), UniProtKB and Allergome. Various examples of profilins, autoimmune allergens, low allergenic proteins, very large proteins, and nucleotide input sequences showcase the utility of AllerCatPro 2.0 for predicting protein allergenicity potential. The AllerCatPro 2.0 web server is freely accessible at https://allercatpro.bii.a-star.edu.sg

    Global QSAR models of skin sensitisers for regulatory purposes

    Get PDF
    Abstract Background The new European Regulation on chemical safety, REACH, (Registration, Evaluation, Authorisation and Restriction of CHemical substances), is in the process of being implemented. Many chemicals used in industry require additional testing to comply with the REACH regulations. At the same time EU member states are attempting to reduce the number of animals used in experiments under the 3 Rs policy, (refining, reducing, and replacing the use of animals in laboratory procedures). Computational techniques such as QSAR have the potential to offer an alternative for generating REACH data. The FP6 project CAESAR was aimed at developing QSAR models for 5 key toxicological endpoints of which skin sensitisation was one. Results This paper reports the development of two global QSAR models using two different computational approaches, which contribute to the hybrid model freely available online. Conclusions The QSAR models for assessing skin sensitisation have been developed and tested under stringent quality criteria to fulfil the principles laid down by the OECD. The final models, accessible from CAESAR website, offer a robust and reliable method of assessing skin sensitisation for regulatory use.</p

    A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic contact dermatitis is an inflammatory skin disease that affects a significant proportion of the population. This disease is caused by an adverse immune response towards chemical haptens, and leads to a substantial economic burden for society. Current test of sensitizing chemicals rely on animal experimentation. New legislations on the registration and use of chemicals within pharmaceutical and cosmetic industries have stimulated significant research efforts to develop alternative, human cell-based assays for the prediction of sensitization. The aim is to replace animal experiments with in vitro tests displaying a higher predictive power.</p> <p>Results</p> <p>We have developed a novel cell-based assay for the prediction of sensitizing chemicals. By analyzing the transcriptome of the human cell line MUTZ-3 after 24 h stimulation, using 20 different sensitizing chemicals, 20 non-sensitizing chemicals and vehicle controls, we have identified a biomarker signature of 200 genes with potent discriminatory ability. Using a Support Vector Machine for supervised classification, the prediction performance of the assay revealed an area under the ROC curve of 0.98. In addition, categorizing the chemicals according to the LLNA assay, this gene signature could also predict sensitizing potency. The identified markers are involved in biological pathways with immunological relevant functions, which can shed light on the process of human sensitization.</p> <p>Conclusions</p> <p>A gene signature predicting sensitization, using a human cell line in vitro, has been identified. This simple and robust cell-based assay has the potential to completely replace or drastically reduce the utilization of test systems based on experimental animals. Being based on human biology, the assay is proposed to be more accurate for predicting sensitization in humans, than the traditional animal-based tests.</p

    A New Pathway for Protein Haptenation by beta-Lactams

    Get PDF
    "This is the peer reviewed version of the following article: Pérez-Ruíz, Raúl, Emilio Lence, Inmaculada Andreu, Daniel Limones-Herrero, Concepción González-Bello, Miguel A. Miranda, and M. Consuelo Jiménez. 2017. A New Pathway for Protein Haptenation by &#946;-Lactams. Chemistry - A European Journal 23 (56). Wiley: 13986 94. doi:10.1002/chem.201702643, which has been published in final form at https://doi.org/10.1002/chem.201702643. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] The covalent binding of beta-lactams to proteins upon photochemical activation has been demonstrated by using an integrated approach that combines photochemical, proteomic and computational studies, selecting human serum albumin (HSA) as a target protein and ezetimibe (1) as a probe. The results have revealed a novel protein haptenation pathway for this family of drugs that is an alternative to the known nucleophilic ring opening of beta-lactams by the free amino group of lysine residues. Thus, photochemical ring splitting of the beta-lactam ring, following a formal retro-Staudinger reaction, gives a highly reactive ketene intermediate that is trapped by the neighbouring lysine residues, leading to an amide adduct. For the investigated 1/HSA system, covalent modification of residues Lys414 and Lys525, which are located in sub-domains IIIA and IIIB, respectively, occurs. The observed photobinding may constitute the key step in the sequence of events leading to photoallergy. Docking and molecular dynamics simulation studies provide an insight into the molecular basis of the selectivity of 1 for these HSA sub-domains and the covalent modification mechanism. Computational studies also reveal positive cooperative binding of sub-domain IIIB that explains the experimentally observed modification of Lys414, which is located in a barely accessible pocket (sub-domain IIIA).Financial support from Ministerio de Economia, Industria y Competitividad (CTQ2013-47872-C2-1-P, CTQ2016-78875-P, SAF2013-42899-R, SAF2016-75638-R), Instituto de Salud Carlos III (RD12/0013/0009 and RD16/0006/0030), Generalitat Valenciana (PROMETEOII/2013/005), Xunta de Galicia (Centro singular de investigacion de Galicia accreditation 2016-2019, ED431G/09) and European Union (European Regional Development Fund -ERDF) is gratefully acknowledged. E.L. thanks the Xunta de Galicia for a postdoctoral fellowship. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae II supercomputer. The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed PRB2-ISCIII and is supported by grant PT13/0001, of the PE I+D+i 2013-2016, funded by ISCIII and FEDER.Pérez-Ruiz, R.; Lence, E.; Andreu Ros, MI.; Limones Herrero, D.; González-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2017). A New Pathway for Protein Haptenation by beta-Lactams. Chemistry - A European Journal. 23(56):13986-13994. https://doi.org/10.1002/chem.201702643S13986139942356Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742-750. doi:10.1016/s1473-3099(14)70780-7Elander, R. P. (2003). Industrial production of β-lactam antibiotics. Applied Microbiology and Biotechnology, 61(5-6), 385-392. doi:10.1007/s00253-003-1274-yRodriguez-Pena, R., Antunez, C., Martin, E., Blanca-Lopez, N., Mayorga, C., & Torres, M. J. (2005). Allergic reactions to β-lactams. Expert Opinion on Drug Safety, 5(1), 31-48. doi:10.1517/14740338.5.1.31Blanca, M., Romano, A., Torres, M. J., Férnandez, J., Mayorga, C., Rodriguez, J., … Atanasković-Marković, M. (2009). Update on the evaluation of hypersensitivity reactions to betalactams. Allergy, 64(2), 183-193. doi:10.1111/j.1398-9995.2008.01924.xSolensky, R. (2014). Penicillin allergy as a public health measure. Journal of Allergy and Clinical Immunology, 133(3), 797-798. doi:10.1016/j.jaci.2013.10.032Romano, A., Mayorga, C., Torres, M. J., Artesani, M. C., Suau, R., Sánchez, F., … Blanca, M. (2000). Immediate allergic reactions to cephalosporins: Cross-reactivity and selective responses. Journal of Allergy and Clinical Immunology, 106(6), 1177-1183. doi:10.1067/mai.2000.111147Prescott, Jr., W. A., DePestel, D. D., Ellis, J. J., & Regal, R. E. (2004). Incidence of Carbapenem‐Associated Allergic‐Type Reactions among Patients with versus Patients without a Reported Penicillin Allergy. Clinical Infectious Diseases, 38(8), 1102-1107. doi:10.1086/382880Torres, M. J., Ariza, A., Mayorga, C., Doña, I., Blanca-Lopez, N., Rondon, C., & Blanca, M. (2010). Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. Journal of Allergy and Clinical Immunology, 125(2), 502-505.e2. doi:10.1016/j.jaci.2009.11.032Fernandez-Rivas, M., Carral, C. P., Cuevas, M., Marti, C., Moral, A., & Senent, C. J. (1995). Selective allergic reactions to clavulanic acid☆☆☆★. Journal of Allergy and Clinical Immunology, 95(3), 748-750. doi:10.1016/s0091-6749(95)70181-8Baggaley, K. H., Brown, A. G., & Schofield, C. J. (1997). Chemistry and biosynthesis of clavulanic acid and other clavams. Natural Product Reports, 14(4), 309. doi:10.1039/np9971400309Edwards, R. G., Dewdney, J. M., Dobrzanski, R. J., & Lee, D. (1988). Immunogenicity and Allergenicity Studies on Two Beta-Lactam Structures, a Clavam, Clavulanic Acid, and a Carbapenem: Structure-Activity Relationships. International Archives of Allergy and Immunology, 85(2), 184-189. doi:10.1159/000234500Gerberick, G. F., Troutman, J. A., Foertsch, L. M., Vassallo, J. D., Quijano, M., Dobson, R. L. M., … Lepoittevin, J.-P. (2009). Investigation of Peptide Reactivity of Pro-hapten Skin Sensitizers Using a Peroxidase-Peroxide Oxidation System. Toxicological Sciences, 112(1), 164-174. doi:10.1093/toxsci/kfp192Martin, S. F., Esser, P. R., Schmucker, S., Dietz, L., Naisbitt, D. J., Park, B. K., … Sallusto, F. (2010). T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cellular and Molecular Life Sciences, 67(24), 4171-4184. doi:10.1007/s00018-010-0495-3Chipinda, I., Hettick, J. M., & Siegel, P. D. (2011). Haptenation: Chemical Reactivity and Protein Binding. Journal of Allergy, 2011, 1-11. doi:10.1155/2011/839682Schnyder, B., & Pichler, W. J. (2009). Mechanisms of Drug-Induced Allergy. Mayo Clinic Proceedings, 84(3), 268-272. doi:10.4065/84.3.268DiPiro, J. T., Adkinson, N. F., & Hamilton, R. G. (1993). Facilitation of penicillin haptenation to serum proteins. Antimicrobial Agents and Chemotherapy, 37(7), 1463-1467. doi:10.1128/aac.37.7.1463Naisbitt, D. J., Nattrass, R. G., & Ogese, M. O. (2014). In Vitro Diagnosis of Delayed-type Drug Hypersensitivity. Immunology and Allergy Clinics of North America, 34(3), 691-705. doi:10.1016/j.iac.2014.04.009Torres, M. J., Blanca, M., Fernandez, J., Romano, A., Weck, A., … Aberer, W. (2003). Diagnosis of immediate allergic reactions to beta-lactam antibiotics. Allergy, 58(10), 961-972. doi:10.1034/j.1398-9995.2003.00280.xLevine, B. B., & Ovary, Z. (1961). STUDIES ON THE MECHANISM OF THE FORMATION OF THE PENICILLIN ANTIGEN. Journal of Experimental Medicine, 114(6), 875-940. doi:10.1084/jem.114.6.875Perez-Inestrosa, E., Suau, R., Montañez, M. I., Rodriguez, R., Mayorga, C., Torres, M. J., & Blanca, M. (2005). Cephalosporin chemical reactivity and its immunological implications. Current Opinion in Allergy and Clinical Immunology, 5(4), 323-330. doi:10.1097/01.all.0000173788.73401.69Sánchez-Sancho, F., Perez-Inestrosa, E., Suau, R., Montañez, M. I., Mayorga, C., Torres, M. J., … Blanca, M. (2003). Synthesis, characterization and immunochemical evaluation of cephalosporin antigenic determinants. Journal of Molecular Recognition, 16(3), 148-156. doi:10.1002/jmr.621Moreno, F., Blanca, M., Mayorga, C., Terrados, S., Moya, M., Pérez, E., … Carmona, M. J. (1995). Studies of the Specificities of IgE Antibodies Found in Sera from Subjects with Allergic Reactions to Penicillins. International Archives of Allergy and Immunology, 108(1), 74-81. doi:10.1159/000237121De Haan, P., de Jonge, A. J. R., Verbrugge, T., & Boorsma, D. M. (1985). Three Epitope-Specific Monoclonal Antibodies against the Hapten Penicillin. International Archives of Allergy and Immunology, 76(1), 42-46. doi:10.1159/000233659Mayorgaa, C., Obispo, T., Jimeno, L., Blanca, M., Del Prado, J. M., Carreira, J., … Juarez, C. (1995). Epitope mapping of β-lactam antibiotics with the use of monoclonal antibodies. Toxicology, 97(1-3), 225-234. doi:10.1016/0300-483x(94)02983-2Meng, X., Jenkins, R. E., Berry, N. G., Maggs, J. L., Farrell, J., Lane, C. S., … Park, B. K. (2011). Direct Evidence for the Formation of Diastereoisomeric Benzylpenicilloyl Haptens from Benzylpenicillin and Benzylpenicillenic Acid in Patients. Journal of Pharmacology and Experimental Therapeutics, 338(3), 841-849. doi:10.1124/jpet.111.183871BATCHELOR, F. R., DEWDNEY, J. M., & GAZZARD, D. (1965). Penicillin Allergy: The Formation of the Penicilloyl Determinant. Nature, 206(4982), 362-364. doi:10.1038/206362a0Ariza, A., Garzon, D., Abánades, D. R., de los Ríos, V., Vistoli, G., Torres, M. J., … Pérez-Sala, D. (2012). Protein haptenation by amoxicillin: High resolution mass spectrometry analysis and identification of target proteins in serum. Journal of Proteomics, 77, 504-520. doi:10.1016/j.jprot.2012.09.030Blanca, M., Mayorga, C., Sanchez, F., Vega, J. M., Fernandez, J., Juarez, C., … Perez, E. (1991). Differences in serum IgE antibody activity to benzylpenicillin and amoxicillin measured by RAST in a group of penicillin allergic patients. Allergy, 46(8), 632-638. doi:10.1111/j.1398-9995.1991.tb00635.xKelkar, P. S., & Li, J. T.-C. (2001). Cephalosporin Allergy. New England Journal of Medicine, 345(11), 804-809. doi:10.1056/nejmra993637Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., … Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57(12), 787-796. doi:10.1080/15216540500404093Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology, 353(1), 38-52. doi:10.1016/j.jmb.2005.07.075Garzon, D., Ariza, A., Regazzoni, L., Clerici, R., Altomare, A., Sirtori, F. R., … Aldini, G. (2014). Mass Spectrometric Strategies for the Identification and Characterization of Human Serum Albumin Covalently Adducted by Amoxicillin: Ex Vivo Studies. Chemical Research in Toxicology, 27(9), 1566-1574. doi:10.1021/tx500210eKosoglou, T., Statkevich, P., Johnson-Levonas, A. O., Paolini, J. F., Bergman, A. J., & Alton, K. B. (2005). Ezetimibe. Clinical Pharmacokinetics, 44(5), 467-494. doi:10.2165/00003088-200544050-00002Baťová, J., Imramovský, A., HájÍček, J., Hejtmánková, L., & Hanusek, J. (2014). Kinetics and Mechanism of the Base-Catalyzed Rearrangement and Hydrolysis of Ezetimibe. Journal of Pharmaceutical Sciences, 103(8), 2240-2247. doi:10.1002/jps.24070Baťová, J., Imramovský, A., & Hanusek, J. (2015). Aminolysis of ezetimibe. Journal of Pharmaceutical and Biomedical Analysis, 107, 495-500. doi:10.1016/j.jpba.2015.01.019Fischer, M. (1968). Photochemische Reaktionen, IV. Photochemische Fragmentierungen von β-Lactamen. Chemische Berichte, 101(8), 2669-2678. doi:10.1002/cber.19681010809Fabre, H., Ibork, H., & Lerner, D. A. (1994). Photoisomerization Kinetics of Cefuroxime Axetil and Related Compounds. Journal of Pharmaceutical Sciences, 83(4), 553-558. doi:10.1002/jps.2600830422Rossi, E., Abbiati, G., & Pini, E. (1999). Substituted 1-benzyl-4-(benzylidenimino)-4-phenylazetidin-2-ones: Synthesis, thermal and photochemical reactions. Tetrahedron, 55(22), 6961-6970. doi:10.1016/s0040-4020(99)00325-7Gómez-Gallego, M., Alcázar, R., Ramírez, P., Vincente, R., J. Mancheño, M., & A. Sierra, M. (2001). A Study of the Photochemical Isomerization in b-Lactam Rings. HETEROCYCLES, 55(3), 511. doi:10.3987/com-00-9127MUKERJEE, A. K., & SINGH, A. K. (1975). Reactions of Natural and Synthetic β-Lactams. Synthesis, 1975(09), 547-589. doi:10.1055/s-1975-23842Mukerjee, A. K., & Singh, A. K. (1978). β-Lactams: retrospect and prospect. Tetrahedron, 34(12), 1731-1767. doi:10.1016/0040-4020(78)80209-9Pérez-Ruiz, R., Sáez, J. A., Jiménez, M. C., & Miranda, M. A. (2014). Cycloreversion of β-lactams via photoinduced electron transfer. Org. Biomol. Chem., 12(42), 8428-8432. doi:10.1039/c4ob01416bPérez-Ruiz, R., Sáez, J. A., Domingo, L. R., Jiménez, M. C., & Miranda, M. A. (2012). Ring splitting of azetidin-2-ones via radical anions. Organic & Biomolecular Chemistry, 10(39), 7928. doi:10.1039/c2ob26528aZhou, L., Liu, X., Ji, J., Zhang, Y., Wu, W., Liu, Y., … Feng, X. (2014). Regio- and Enantioselective Baeyer–Villiger Oxidation: Kinetic Resolution of Racemic 2-Substituted Cyclopentanones. Organic Letters, 16(15), 3938-3941. doi:10.1021/ol501737aAndersen, M. L., Benneche, T., Undheim, K., de Azevedo, N. R., Ferri, P. H., Pedersen, K. R., … Weinhold, E. G. (1996). Substituent Effects on Homolytic Bond Dissociation Free Energies of Oxygen--Acetyl Bonds in Phenyl Acetates and Nitrogen--Acetyl Bonds in Acetanilides. Acta Chemica Scandinavica, 50, 1045-1049. doi:10.3891/acta.chem.scand.50-1045Dobbins, R. A., Mohammed, K., & Sullivan, D. A. (1988). Pressure and Density Series Equations of State for Steam as Derived from the Haar–Gallagher–Kell Formulation. Journal of Physical and Chemical Reference Data, 17(1), 1-8. doi:10.1063/1.555819Jisha, V. S., Arun, K. T., Hariharan, M., & Ramaiah, D. (2006). Site-Selective Binding and Dual Mode Recognition of Serum Albumin by a Squaraine Dye. Journal of the American Chemical Society, 128(18), 6024-6025. doi:10.1021/ja061301xLucas, L. H., Price, K. E., & Larive, C. K. (2004). Epitope Mapping and Competitive Binding of HSA Drug Site II Ligands by NMR Diffusion Measurements. Journal of the American Chemical Society, 126(43), 14258-14266. doi:10.1021/ja0479538Epps, D. E., Raub, T. J., & Kezdy, F. J. (1995). A General, Wide-Range Spectrofluorometric Method for Measuring the Site-Specific Affinities of Drugs Toward Human Serum Albumin. Analytical Biochemistry, 227(2), 342-350. doi:10.1006/abio.1995.1290Marin, M., Lhiaubet-Vallet, V., & Miranda, M. A. (2011). Site-Dependent Photo-Fries Rearrangement within Serum Albumins. The Journal of Physical Chemistry B, 115(12), 2910-2915. doi:10.1021/jp2009463Li, Z.-M., Wei, C.-W., Zhang, Y., Wang, D.-S., & Liu, Y.-N. (2011). Investigation of competitive binding of ibuprofen and salicylic acid with serum albumin by affinity capillary electrophoresis. Journal of Chromatography B, 879(21), 1934-1938. doi:10.1016/j.jchromb.2011.05.020Aleksic, M., Pease, C. K., Basketter, D. A., Panico, M., Morris, H. R., & Dell, A. (2007). Investigating protein haptenation mechanisms of skin sensitisers using human serum albumin as a model protein. Toxicology in Vitro, 21(4), 723-733. doi:10.1016/j.tiv.2007.01.008Carter, D., He, X., Munson, S., Twigg, P., Gernert, K., Broom, M., & Miller, T. (1989). Three-dimensional structure of human serum albumin. Science, 244(4909), 1195-1198. doi:10.1126/science.2727704Carter, D., & He, X. (1990). Structure of human serum albumin. Science, 249(4966), 302-303. doi:10.1126/science.2374930http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/Sivertsen, A., Isaksson, J., Leiros, H.-K. S., Svenson, J., Svendsen, J.-S., & Brandsdal, B. (2014). Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Structural Biology, 14(1), 4. doi:10.1186/1472-6807-14-4Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server), W368-W371. doi:10.1093/nar/gki464http://biophysics.cs.vt.edu/H++Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827-835. doi:10.1038/1869Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 Å resolution. Protein Engineering, Design and Selection, 12(6), 439-446. doi:10.1093/protein/12.6.439Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418

    Application of AllerCatPro 2.0 for protein safety assessments of consumer products

    Get PDF
    Foreign proteins are potentially immunogenic, and a proportion of these are able to induce immune responses that result in allergic sensitization. Subsequent exposure of sensitized subjects to the inducing protein can provoke a variety of allergic reactions that may be severe, or even fatal. It has therefore been recognized for some time that it is important to determine a priori whether a given protein has the potential to induce allergic responses in exposed subjects. For example, the need to assess whether transgene products expressed in genetically engineered crop plants have allergenic properties. This is not necessarily a straightforward exercise (as discussed elsewhere in this edition), but the task becomes even more challenging when there is a need to conduct an overall allergenicity safety assessment of complex mixtures of proteins in botanicals or other natural sources that are to be used in consumer products. This paper describes a new paradigm for the allergenicity safety assessment of proteins that is based on the use of AllerCatPro 2.0, a new version of a previously described web application model developed for the characterization of the allergenic potential of proteins. Operational aspects of AllerCatPro 2.0 are described with emphasis on the application of new features that provide improvements in the predictions of allergenic properties such as the identification of proteins with high allergenic concern. Furthermore, the paper provides a description of strategies of how AllerCatPro 2.0 can best be deployed as a screening tool for identifying suitable proteins as ingredients in consumer products as well as a tool, in conjunction with label-free proteomic analysis, for identifying and semiquantifying protein allergens in complex materials. Lastly, the paper discusses the steps that are recommended for formal allergenicity safety assessment of novel consumer products which contain proteins, including consideration and integration of predicted consumer exposure metrics. The article therefore provides a holistic perspective of the processes through which effective protein safety assessments can be made of potential allergenic hazards and risks associated with exposure to proteins in consumer products, with a particular focus on the use of AllerCatPro 2.0 for this purpose

    Collaborative development of predictive toxicology applications

    Get PDF
    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals
    corecore