50 research outputs found

    Combining lacewings and parasitoids for biological control of foxglove aphids in sweet pepper

    Get PDF
    The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non-additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.Fil: Rocca, Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Messelink, Gerben J.. University of Agriculture Wageningen; Países Bajo

    Combining lacewings and parasitoids for biological control of foxglove aphids in sweet pepper

    Get PDF
    The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non-additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.Centro de Estudios Parasitológicos y de Vectore

    Combining lacewings and parasitoids for biological control of foxglove aphids in sweet pepper

    Get PDF
    The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non-additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.Centro de Estudios Parasitológicos y de Vectore

    Effect of entomopathogenic fungi as root endophyte on the development of a specialist & generalist herbivore

    Get PDF
    Herbivore pests such as the invasive specialist Tuta absoluta or the native generalist Chrysodeixis chalcites known as the tomato looper can cause severe damage in tomato greenhouses. Systematic defences of the plants could slow down the build-up of the pest populations, thus prolong the time before economical damage. Especially for organic growers, this form of functional biodiversity could serve as first line of the defence

    Development and thermal activity thresholds of European mirid predatory bugs

    Get PDF
    Generalist predators belonging to Dicyphini (Hemiptera: Miridae) play an important role in pest control in vegetable crops. Temperature is one the most important factors affecting their efficacy as biological control agents (BCAs) and a better understanding of temperature effects can help to select the best performing species for certain climatic conditions. In this study we assessed the thermal requirements of six dicyphine species: Dicyphus bolivari (2 different strains), Dicyphus eckerleini, Dicyphus errans, Dicyphus flavoviridis, Nesidiocoris tenuis and Macrolophus pygmaeus. Two experimental methods were used: one static, by recording the developmental times at six temperatures (15–40 °C) and one dynamic, by determining low and high temperature thresholds for movement. Based on the results of both methods we identified two groups: N. tenuis, M. pygmaeus and D. bolivari showed the best performance at high temperatures and the species D. errans, D. eckerleini and D. flavoviridis were most active at low temperatures. Dicyphus bolivari and N. tenuis were the only species able to reach adulthood at the constant temperature of 35 °C. At low temperatures, D. eckerleini and D. errans were the only species still able to walk below 0 °C. The species less vulnerable for lower temperatures were more vulnerable for higher temperatures and vice-versa. Among the tested species, the larger sized species seem to be better adapted to lower temperature and the and smaller sized species better to higher temperatures. Females and males in all species differed in their cold and heat tolerance. Males were in general beter adapted to higher temperatures and females beter adapted to lower temperatures.</p

    The potential of highly nutritious frozen stages of Tyrophagus putrescentiae as a supplemental food source for the predatory mite Amblyseius swirskii

    Get PDF
    Astigmatid mites have potential as supplementary prey items to support generalist predator populations in crops. However, applying living prey mites has some disadvantages; if not predated they have the potential to cause crop damage and allergies. In this study, we evaluated various diets based on the astigmatid mite Tyrophagous putrescentiae (Schrank) as a supplemental food source for the predatory mite Amblyseius swirskii Ahias-Henriot. Eggs and larvae of T. putrescentiae were reared on a diet of dog food (rich in proteins and fat) or bran (rich in carbohydrate); they were offered either frozen or alive, and either with or without cattail pollen (Typha angustifolia L.). Oviposition rate of A. swirskii fed with frozen mite larvae reared on dog food was similar to the rate observed when they were fed with cattail pollen or living prey mites, but developmental time of A. swirskii was longer on this frozen diet than on a diet of living prey mites or pollen. Both living and frozen prey mites were, in contrast with cattail pollen, not suitable for oviposition by western flower thrips, Frankliniella occidentalis Pergande. In a greenhouse study, the use of frozen prey mite stages as supplemental food on chrysanthemum plants allowed populations of A. swirskii to establish, but not increase; in contrast, provision of living prey mites and pollen increased A. swirskii populations on plants. Hence, our study shows that living prey mites, but not frozen prey mites, had the greatest potential as a supplemental food source for A. swirskii.</p

    New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops

    Get PDF
    Biological pest control with mass-produced arthropod natural enemies is well developed in greenhouse crops and has often resulted in the evolution of complex ecosystems with persistent populations of multiple arthropod natural enemy species. However, there are cases where arthropod natural enemies are either not effective enough, not available, or their use is rather costly. For these reasons, biological control based on microorganisms, also referred to as ‘microbials’, represents a complementary strategy for further development. Although commercially available microbials have been around for quite some time, research on and the applied use of combinations of arthropod natural enemies and microbials have remained relatively under explored. Here, we review current uses of entomopathogenic fungi, bacteria and viruses, and their possible direct and indirect effects on arthropod natural enemies in European greenhouses. We discuss how microbials might be combined with arthropod natural enemies in the light of new methodologies and technologies such as conservation biological control, greenhouse climate management, and formulation and delivery. Furthermore, we explore the possibilities of using other microorganisms for biological control, such as endophytes, and the need to understand the effect of insect-associated microorganisms, or symbionts, on the success of biological control. Finally, we suggest future research directions to optimize the combined use of microbials and arthropod natural enemies in greenhouse production.</p
    corecore