3 research outputs found

    Freeze-dried mucoadhesive polymeric system containing pegylated lipoplexes : towards a vaginal sustained released system for siRNA

    Get PDF
    Topical vaginal sustained delivery of siRNA presents a significant challenge due to the short residence time of formulations. Therefore, a drug delivery system capable to adhere to the vaginal mucosa is desirable, as it could allow a prolonged delivery and increase the effectiveness of the therapy. The aim of this project is to develop a polymeric solid mucoadhesive system, loaded with lipoplexes, able to be progressively rehydrated by the vaginal fluids to form a hydrogel and to deliver siRNA to vaginal tissues. To minimize adhesive interactions with vaginal mucus components, lipoplexes were coated with different derivatives of polyethylene glycol: DPSE-PEG2000, DPSE-PEG750 and ceramide-PEG2000. Based on stability and diffusion properties in simulated vaginal fluids, lipoplexes containing DSPE-PEG2000 were selected and incorporated in hydroxyethyl cellulose (HEC) hydrogels. Solid systems, called sponges, were then obtained by freeze-drying. Sponges meet acceptable mechanical characteristics and their hardness, eformability and mucoadhesive properties are not influenced by the presence of lipoplexes. Finally, mobility and stability of lipoplexes inside sponges rehydrated with vaginal mucus, mimicking in situ conditions, were evaluated by advanced fluorescence microscopy. The release rate was found to be influenced by the HEC concentration and consequently by the viscosity after rehydration. This study demonstrates the feasibility of entrapping pegylated lipoplexes into a solid matrix system for a prolonged delivery of siRNA into the vagina

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    The Experimental Design as Practical Approach to Develop and Optimize a Formulation of Peptide-Loaded Liposomes

    No full text
    To investigate the encapsulation of Print 3G, a peptidic agent that could reduce the angiogenic development of breast tumors, pegylated liposomes used as intravenous vectors were studied and characterized. Recently, the path of liposomes has been explored with success to improve the pharmacological properties of peptidic drugs and to stabilize them. In this study, loaded unilamellar vesicles composed of SPC:CHOL:mPEG2000-DSPE (47:47:6) were prepared by the hydration of lipid film technique. An HPLC method was developed and validated for the determination of Print 3G to calculate its encapsulation efficiency. Observed Print 3G adsorption on different materials employed during liposome preparation (such as glass beads, tubing, and connections for extrusion) led to the modification of the manufacturing method. The freeze-thawing technique was used to enhance the amount of Print 3G encapsulated into blank liposomes prepared using the hydration of lipid film procedure. Many factors may influence peptide entrapment, namely the number of freeze-thawing cycles, the lipid concentration, the peptide concentration, and the mixing time. Consequently, a design of experiments was performed to obtain the best encapsulation efficiency while minimizing the number of experiments. The lipid concentration and the number of freeze-thawing cycles were identified as the positive factors influencing the encapsulation. As a result of the optimization, an optimum was found and encapsulation efficiencies were improved from around 30% to 63%. Liposome integrity was evaluated by photon correlation spectroscopy and freeze-fracture electron microscopy to ensure that the selected formulation possesses the required properties to be a potential candidate for further in vitro and in vivo experiments
    corecore