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Abstract  

Topical vaginal sustained delivery of siRNA presents a significant challenge due to the short 

residence time of formulations. Therefore, a drug delivery system capable to adhere to the 

vaginal mucosa is desirable, as it could allow a prolonged delivery and increase the 

effectiveness of the therapy. The aim of this project is to develop a polymeric solid 

mucoadhesive system, loaded with lipoplexes, able to be progressively rehydrated by the 

vaginal fluids to form a hydrogel and to deliver siRNA to vaginal tissues. 

To minimize adhesive interactions with vaginal mucus components, lipoplexes were coated 

with different derivatives of polyethylene glycol: DPSE-PEG2000, DPSE-PEG750 and ceramide-

PEG2000. Based on stability and diffusion properties in simulated vaginal fluids, lipoplexes 

containing DSPE-PEG2000 were selected and incorporated in hydroxyethyl cellulose (HEC) 

hydrogels. Solid systems, called sponges, were then obtained by freeze-drying. Sponges meet 

acceptable mechanical characteristics and their hardness, deformability and mucoadhesive 

properties are not influenced by the presence of lipoplexes. Finally, mobility and stability of 

lipoplexes inside sponges rehydrated with vaginal mucus, mimicking in situ conditions, were 

evaluated by advanced fluorescence microscopy. The release rate was found to be influenced 

by the HEC concentration and consequently by the viscosity after rehydration.  

This study demonstrates the feasibility of entrapping pegylated lipoplexes into a solid matrix 

system for a prolonged delivery of siRNA into the vagina.  
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Abbreviations:  

Ceramide-PEG2000: N-octanoyl-sphingosine-1-{succinyl[methoxy(polyethylene glycol)2000]} 

DSPE-PEG2000: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene 

glycol)-2000 

DSPE-PEG750: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene 

glycol)-750] 

FCS: fluorescence correlation spectroscopy  

fluo-siRNA: fluorescent small interfering RNA  

fSPT: fluorescence single particle tracking 

HEC: hydroxyethyl cellulose 

PdI: polydispersity index  

PEG: polyethylene glycol 

PEG400: polyethylene glycol 400 

SEM-EDX: Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis 

siRNA: small interfering RNA 

SVF: simulated vaginal fluid  

TA: texture analyser 

TAE: Tris Acetate EDTA buffer 
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1. Introduction 1 

In the context of genital diseases, the vaginal route of administration has gained great attention 2 

for drug delivery and has been extensively studied for effective delivery of different drug 3 

molecules [1-3]. Advantages over other routes of drug administration include low drug doses, 4 

reduced risk of systemic immune activation, site-specific delivery, and most importantly, 5 

circumvention of first-pass hepatic clearance [4]. The ease of administration and low toxicity 6 

profile make the vaginal route an excellent site for the delivery of many drugs and particularly 7 

for siRNA delivery for the treatment and prevention of vaginal and/or cervical diseases [5-7]. 8 

However, naked siRNAs have difficulties in achieving efficient mucosal uptake if administered 9 

directly into the vagina due to degradation, poor cellular uptake, low mucus diffusion and high 10 

clearance. In order to overcome these obstacles, siRNA need to be encapsulated in a vector, 11 

such as liposomes. 12 

Liposomes have been largely investigated as vaginal drug delivery system [8-11]. However, 13 

vaginal conditions are subject to changes because of numerous physiological and non-14 

physiological factors that can lead to variations in the bioavailability of drugs. Moreover, a 15 

vaginal administration of lipoplexes (liposomes encapsulating siRNA) encounters important 16 

barriers such as the penetration through the mucus to reach the epithelial tissue and a short 17 

residence time. One strategy to improve the particle diffusion through the mucus and to create 18 

“mucopenetrating” lipoplexes is to densely coat their surface with polyethylene glycol (PEG) 19 

[1, 12, 13]. PEG is a neutral hydrophilic polymer that has been described to minimize adhesive 20 

interactions between nanoparticles and mucus components, allowing them to penetrate rapidly 21 

through viscoelastic human mucus secretions [14, 15]. The size of the lipoplexes is also 22 

another important parameter to consider for the diffusion. It has been shown that particles with 23 

a diameter around 200 - 300 nm can diffuse more rapidly through undiluted human vaginal 24 

mucus, than smaller ones (100 nm) and bigger ones (> 500 nm) [16, 17].  25 

Unfortunately, even if lipoplexes are mucopenetrating, they have a short residence time, which 26 

conducts them to be quickly eliminated. In order to improve the vaginal retention, lipoplexes 27 

should be incorporated in an appropriate depot system with a desirable viscosity and with 28 
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mucoadhesive properties. For this purpose, a polymeric hydrogel can be a good solution [18]. 29 

Among the different mucoadhesive polymers used for vaginal administration and based on 30 

previous results [19-21], cellulosic derivatives and particularly hydroxyethyl cellulose (HEC) 31 

are attractive candidates. It has also been described that lipid vesicles are compatible with 32 

HEC hydrogels [22].  33 

Finally, in order to avoid drug degradation and to obtain a solid and easy to handle system, the 34 

hydrogels containing pegylated lipoplexes should be freeze-dried. The obtained system, called 35 

sponge, has been previously described and characterized [19].  36 

Taken together, increasing the residence time with the vaginal mucosa by introducing 37 

pegylated lipoplexes inside a mucoadhesive solid system can be crucial for efficient vaginal 38 

siRNA delivery. Combining mucoadhesion and prolonged drug delivery possesses the 39 

advantages to improve patient’s compliance and to reduce the frequency of application.  40 

Here, we develop a novel solid matrix system able to adhere to the vaginal mucosa, to be in 41 

situ rehydrated by the vaginal fluids to form a hydrogel and to deliver in a sustained manner 42 

mucopenetrating pegylated lipoplexes and consequently siRNA to vaginal tissues under 43 

pathological conditions.    44 
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2. Material and Methods 45 

 46 

2.1. Material  47 

1,2-Dioleoyl-3-trimethylammonium-propane (chloride salt) (DOTAP), 1,2-dioleoyl-sn-glycero-48 

3-phosphoethanolamine (DOPE), cholesterol, 1,2-distearoyl-sn-glycero-3-49 

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (DSPE-50 

PEG2000), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-51 

750] (ammonium salt) (DSPE-PEG750) and N-octanoyl-sphingosine-1-52 

{succinyl[methoxy(polyethylene glycol)2000]} (ceramide-PEG2000) were purchased from Avanti 53 

Polar Lipids, Inc. (Alabaster, Alabama, USA). Scramble siRNA (siRNA) and fluorescent 54 

scramble siRNA with alexa Fluor® 647 (fluo-siRNA) were provided by Eurogentec® 55 

(Eurogentec SA, Liège, Belgium) with the following sequence: sense strand: 5’-56 

AGAGUUCAAAAGCCCUUCdTdT-3’ and antisense strand: 5’-57 

GAAGGGCUUUUGAACUCUdTdT-3’ (alexa Fluor 647 in position 5’). TAE buffer (50X pH 8.0) 58 

was obtained from VWR (Leuven, Belgium). D-(+)-trehalose dehydrate (from Saccharomyces 59 

cerevisiae, ≥ 99%) was purchased from Sigma - Aldrich (Schnelldorf, Germany). Hydroxyethyl 60 

cellulose 250M (HEC) was purchased from Ashland (Covington, USA) and polyethylene glycol 61 

400 (PEG400) was purchased from Fagron (Waregem, Belgium). All the components used to 62 

prepare synthetic vaginal mucus were purchased from Sigma - Aldrich (Schnelldorf, Germany). 63 

 64 

2.2. Lipoplexes formulations  65 

2.2.1. Preparation of lipoplexes  66 

Liposomes were prepared from a mixture of DOTAP, cholesterol and DOPE at the molar ratio 67 

1/0.75/0.5, by the hydration of lipid film method, as described previously [23]. Briefly, lipids 68 

were dissolved in chloroform at a total concentration of 5.6 mM. The organic solvent was 69 

removed using a rotary evaporator. The resulting thin lipid film was hydrated with 2 mL of 70 

RNAse free water and vigorously vortexed. Finally, the suspension was repeatedly extruded 71 

through polycarbonate membranes with 200 nm pore size.  72 
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Lipoplexes were obtained in RNAse free water by electrostatic interaction between liposomes 73 

and siRNA at the N/P ratio of 2.5 [19].  74 

Lipoplexes were pegylated by addition of 30% of DSPE-PEG2000, DSPE-PEG750 or ceramide-75 

PEG2000 (% mol / DOTAP) by the post-insertion technique. In brief, the PEG in RNAse free 76 

water (1 mM) were added to preformed lipoplexes and the resulting suspension was vortexed 77 

and maintained 1 h at 37°C under continuous stirring. 78 

 79 

2.2.2. Freeze-drying of lipoplexes 80 

Samples were prepared at 300 nM siRNA concentration in a final volume of 1 mL. Different 81 

amounts of trehalose were added (from 1 to 10% m/v) to the lipoplexes. Lipoplexes were then 82 

freeze-dried using a vacuum freeze-dryer (Heto-Holten DW 8030, Vacuubrand RZ8 pump) with 83 

a freeze-drying cycle previously described [19]. 84 

 85 

2.2.3. Particles characterization  86 

The physicochemical characteristics of the lipoplexes were evaluated before and after freeze-87 

drying. Freeze-dried lipoplexes were rehydrated with 1 mL of RNAse free water and stirred for 88 

30 min at room temperature.  89 

a. Particle size, polydispersity, zeta potential  90 

The mean diameter (nm) and the polydispersity index (PdI) of the lipoplexes (100 nM siRNA, 91 

1 mL) were determined by Dynamic Light Scattering method. The charge density was 92 

evaluated by examining the zeta potential (mV). Both measures were made at 25°C, using a 93 

Malvern Zetasizer® (Nano ZS, Malvern Instruments, UK) [23].  94 

b. Complexation efficiency 95 

The level of siRNA complexation was evaluated by agarose (4%) gel electrophoresis. In brief, 96 

lipoplexes (300 nM, 30 µL) were loaded onto the agarose gel in TAE buffer and the 97 

electrophoresis was performed at 100 V for 1 h in a Horizon 11.14 horizontal gel 98 

electrophoresis apparatus (Biometra, Goettingen, Germany). Gel was visualized by exposure 99 

to UV-illumination by a Molecular Imager Gel Doc XR System (Bio-Rad, Hercules, CA, USA). 100 
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c. Stability  101 

Freeze-dried lipoplexes were stored in closed glass vials at 4°C for 25 days. The integrity of 102 

complexed siRNA was assessed by agarose gel electrophoresis. Triton X-100 (0.5% w/v) was 103 

used to break vesicles and release the complexed siRNA [23]. Gel retardation assay was 104 

performed in the same conditions as described in section 2.2.3.b.  105 

The mean diameter, the PdI and the zeta potential of the freeze-dried lipoplexes were also 106 

measured, as described in section 2.2.3.a.  107 

 108 

2.3. Sponges formulations 109 

2.3.1. Preparation of placebo sponges 110 

Hydrogels (6 g) were prepared by gradual dispersion in water of HEC polymer (0.83% or 111 

1.67%) and PEG400 (0.41%), at room temperature and under magnetic stirring. Once 112 

homogeneous aqueous dispersions were obtained, the hydrogels were then freeze-dried to 113 

form sponges [19].  114 

 115 

2.3.2. Preparation of sponges loaded with lipoplexes 116 

HEC (0.83% or 1.67%), PEG400 (0.41%) and trehalose (1%) were gradually dispersed in 117 

lipoplexes (300 nM, 6 mL) suspension at room temperature and under magnetic stirring. The 118 

obtained hydrogels containing lipoplexes were then freeze-dried as described above.  119 

 120 

2.3.3. Preparation of artificial vaginal mucus 121 

Simulated vaginal mucus (SVF) was prepared with NaCl (0.351 g), KOH (0.140 g), Ca(OH)2 122 

(0.022 g), bovine serum albumin (0.002 g), lactic acid (0.200 g), acetic acid (0.100 g), glycerol 123 

(0.016 g), urea (0.040 g), glucose (0.500 g) and dried porcine gastric mucin (type 3) (1.5% w/v) 124 

mixed to 90 mL of milliQ water [24, 25]. SVF was stirred until complete dispersion of the 125 

components. The pH was adjusted to 6 using HCl (0.1 M) and the final volume was adjusted 126 

to 100 mL with milliQ water. 127 

 128 
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2.3.4. Characterization  129 

a. Mucoadhesion  130 

The mucoadhesive strength (N) was determined using a Texture Analyzer (TA) (Lloyd 131 

Instruments, Ametek Company) in compression mode and with hydrated mucin disc, as 132 

described previously [19, 22]. Briefly, the sponges were attached with both side adhesive tape 133 

on the table of the TA. The mucin disc fixed to the probe (13 mm diameter) was brought into 134 

contact with the sponge with a preload of 0.1 N and was maintained for 60s to ensure intimate 135 

contact. The probe was then elevated and the mucoadhesive strength was determined from 136 

the detachment force between the disc and the sponge. The mucoadhesion of different 137 

commercialized pharmaceutical products for vaginal administration (Gynodaktarin®, Lubrilan®, 138 

Mithra Intim gel®, Gynoxin®, Lubexxx®, Canestene®, Crinone®, Preventex®) was also measured 139 

in the same condition in order to compare them to prepared sponges.  140 

b. Hardness and deformability 141 

The hardness (N) and the deformability (%) of the sponges were determined with a TA in 142 

compression and cyclic mode. The sponges were attached with both side adhesive tape on 143 

the table of the TA. A cylindrical probe (25 mm diameter) was compressed four times into each 144 

sample with a preload of 0.5 N, at a defined rate (1 mm/s) and to a defined depth (0.2 mm). 145 

The hardness is the force measured after the first compression. The deformability is the ratio 146 

of the force obtained after the first compression and the force measured after each cycle.  147 

c. Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis (SEM-EDX) 148 

Scanning electron microscopy (SEM) was performed on sponges loaded with lipoplexes using 149 

a Field Emission Environmental microscope (Philips, model XL 30) after metallization with 150 

platinum (30 nm). Elemental detection was also performed with this microscope without 151 

preparation of the samples. The morphology of the lipoplexes was analysed. Lipoplexes were 152 

identified by the phosphorus atom (P) of siRNA molecules.  153 

 154 
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2.4. Diffusion and colloidal stability of lipoplexes  155 

Lipoplexes were prepared with fluo-siRNA (300 nM) and the sponges were loaded with 156 

fluorescent lipoplexes, as described in sections 2.2.1. and 2.3.2. Sponges were previously 157 

rehydrated with 2 mL of SVF at 37°C in order to mimic in situ vaginal conditions before 158 

measuring the diffusion of lipoplexes. 159 

2.4.1. Fluorescence Single Particle Tracking (fSPT) 160 

For the analysis of lipoplexes inside mucus, 10 µL of lipoplexes were added to 40 µL of SVF 161 

in a 8-well plate and for the analysis of lipoplexes loaded into rehydrated sponges, 50 µL were 162 

sampled. Moreover, 10 µL of lipoplexes were added in 40 µL of RNAse free water, as a control 163 

condition. Each sample was allowed to equilibrate for 15 min at 37°C before being placed on 164 

the swept-field microscope (Nikon, Brussels, Belgium) equipped with a 60x oil immersion lens 165 

(Nikon) and with a stage top incubator kept at 37°C. Movies were recorded with NIS Elements 166 

software (Nikon) driving the Andor ixon ultra 897 camera (Belfast, UK). Analysis of the videos 167 

was performed using an house-developed particle tracking software [26].  168 

 169 

2.4.2. Fluorescence Correlation Spectroscopy (FCS)  170 

The samples were prepared in the same conditions as above (2.4.1.). They were placed in a 171 

glass-bottom 96-well plate (Greiner bio-one, Frickenhausen, Germany) and the fluorescent 172 

signal was measured respectively after 0 h, 2 h and 4 h of incubation at 37°C. FCS 173 

measurements were performed on a C1si laser scanning confocal microscope (Nikon), 174 

equipped with a time correlated single photon counting data acquisition module (Picoquant, 175 

Berlin, Germany). The laser beam was held stationary and was focused through an oil 176 

immersion objective lens (Plan Apo 60x, NA 1.2, collar rim correction, Nikon). The 647 nm 177 

laser beam of krypton-argon laser (Bio-Rad, Cheshire, UK) was used and the red fluorescence 178 

intensity fluctuations were recorded using Sympho-time (Picoquant, Berlin, Germany) for at 179 

least 60 s.  180 

 181 
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2.5. Release study  182 

The release rate of fluorescent lipoplexes from the sponges was monitored over time and 183 

determined by fSPT technique. The sponges loaded with fluorescent lipoplexes were placed 184 

on ThinCert® with 0.4 µm pores diameter (PET membrane, Greiner bio-one) in a 6-well TC 185 

plate (Cellstar, Greiner bio-one) and were rehydrated with 2 mL of SVF (figure 1). The acceptor 186 

compartment was filled with SVF (2.5 mL) and all the system was incubated at 37°C. Every 187 

hour during 6 h, 100 µL were collected and fSPT movies were recorded, as described in section 188 

2.4.1. in order to demonstrate the presence of lipoplexes in the acceptor compartment filled 189 

with SVF.  190 

 191 

 192 

 193 

Figure 1: Schematic illustration of monitoring lipoplexes release from rehydrated sponges and 194 

diffusion through the SVF mucus into the acceptor compartment by fSPT. 195 

 196 

2.6. Statistical analysis 197 

All values are expressed as the mean ± SEM. Statistical analyses were performed using 198 

GraphPad Prism® software. A p value < 0.05 was considered significant (*).    199 
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3. Results and Discussion 200 

 201 

3.1. Preparation, characterization and freeze-drying of lipoplexes  202 

3.1.1. Unpegylated lipoplexes  203 

As shown in figure 2 , the mean size of the lipoplexes before freeze-drying (A and B) is around 204 

200 nm in diameter with a low PdI (< 0.2) and a zeta potential around +50 mV. After freeze-205 

drying and rehydration with water (figure 2 C and D), the physicochemical characteristics of 206 

these lipoplexes are completely different: the size and PdI increase (> 500 nm and > 0.5 207 

respectively) and the zeta potential decreases (up to +10 mV). In order to prevent these 208 

variations, different percentages of trehalose were added. Indeed, as described by Chen et al. 209 

[27], the addition of a lyoprotectant, such as trehalose, is necessary to protect the membrane 210 

integrity of the lipoplexes during freeze-drying. It avoids a phase transition and can also 211 

improve drug retention by reducing the damages by ice crystals and inhibiting vesicles 212 

aggregation and/or fusion. It also favours the reversibility of nanoparticles rehydration after 213 

freeze-drying and the encapsulated drug protection [28-31]. Addition of increased amounts of 214 

trehalose (1 - 10%) only slightly modifies the size (~ 300 nm with 10% trehalose) and the PdI 215 

(~ 0.2) of lipoplexes (figure 2.A). However, the zeta potential decreases with increased 216 

concentration of trehalose (figure 2.B). After freeze-drying with trehalose and rehydration, 217 

lipoplexes recover their original size (~ 200 nm), particularly when small concentrations of 218 

trehalose were used (1 - 3%) (figure 2.C). Higher trehalose concentrations seem to slightly 219 

increase the size. Concerning the zeta potential, figure 2.D depicts that the surface charge 220 

decreases up to neutrality in the presence of 10% trehalose. In order to keep as close as 221 

possible the initial physicochemical characteristics of the lipoplexes, 1% of trehalose was 222 

selected for following experiments.  223 

 224 
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 225 

Figure 2: Hydrodynamic diameter (nm), PdI (A) (C) and zeta potential (mV) (B) (D) of 226 

lipoplexes with increased percentages of trehalose (1 to 10 % m/v) before and after freeze-227 

drying (n=4). 228 

 229 

3.1.2. Pegylated lipoplexes  230 

Lipoplexes were then pegylated by addition of 30% of DSPE-PEG2000, DSPE-PEG750 or 231 

ceramide-PEG2000. Indeed, it is well known that particles can easily diffuse through a mucosal 232 

vaginal layer given that they are coated with PEG [2, 32, 33]. For this reason, three different 233 

PEG derivatives were evaluated and compared. As highlights figure 3.A, lipoplexes containing 234 

DSPE-PEG2000 or ceramide-PEG2000 have the same size before (1) and after (2) freeze-drying 235 

(~ 200 nm). The PdI slightly increases but is still around 0.2. They also recover their zeta 236 

potential once rehydrated (around -10 and +20 mV respectively). Concerning the lipoplexes 237 

with DSPE-PEG750, their size increases significantly after freeze-drying (> 600 nm). The PdI 238 

also increases up to 0.4, giving rise to an increased heterogeneity of the system. However, the 239 
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zeta potential does not vary before and after freeze-drying (~ -12 mV) (figure 3.B). These 240 

results show that lipoplexes containing DSPE-PEG750 are less stable than other lipoplexes, 241 

which can be a problem for further incorporation in a prolonged release system.  242 

 243 

 244 

Figure 3: Hydrodynamic diameter (nm), PdI (A) and zeta potential (mV) (B) of lipoplexes with 245 

DSPE-PEG2000, DSPE-PEG750 or ceramide-PEG2000 and with 1% of trehalose before (1) and 246 

after (2) freeze-drying. A paired Student’s t-test is used to compare lipoplexes with DSPE-247 

PEG2000 (1)-(2), DSPE-PEG750 (1)-(2) and ceramide-PEG2000 (1)-(2) (n=6).  248 

 249 

Table 1 summarizes the physicochemical characteristics of lipoplexes before and after freeze-250 

drying. 251 

Lipoplexes Freeze-drying Diameter (nm) PdI Zeta potential (mV) 

Without PEG 
before 
after 

198,8 ± 6,1 
197,3 ± 7,4 

0,07 ± 0,01 
0,14 ± 0,02 

29,3 ± 1,9 
29,3 ± 3,9 

DSPE-PEG2000 
before 
after 

196,1 ± 5,8 
220,6 ± 12,1 

0,15 ± 0,01 
0,25 ± 0,02 

-10,1 ± 2,1 
-10,2 ± 1,3 

DSPE-PEG750 
before 
after 

222,0 ± 32,0 
620,9 ± 90,7 

0,15 ± 0,01 
0,40 ± 0,03 

-13,9 ± 0,6 
-10,5 ± 2,5 

Ceramide-PEG2000 

 
before 
after 

207,8 ± 3,2 
216,9 ± 6,7 

0,14 ± 0,02 
0,27 ± 0,01 

17,7 ± 1,5 
20,5 ± 2,2 

Table 1. Physicochemical characteristics of lipoplexes with 1% trehalose before and after 252 

freeze-drying. Values represent mean ± SEM (n=4). 253 

 254 
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3.1.3. Stability of freeze-dried lipoplexes 255 

The stability of the freeze-dried pegylated lipoplexes was evaluated after storage at 4°C in 256 

closed glass vials for 1 month. The mean size, the PdI and the zeta potential were measured. 257 

It appears that the size of the lipoplexes does not vary significantly and ranged between 200 258 

to 300 nm for lipoplexes with DSPE-PEG2000 and with ceramide-PEG2000. Concerning the PdI, 259 

it is generally close to 0.2 and the zeta potential remains also constant for both types of 260 

pegylated lipoplexes (data not shown).  261 

The complexation efficiency and the integrity of lipoplexes were assessed by agarose gel 262 

electrophoresis (figure 4). As shown in figure 4.A, the first two spots correspond to free siRNA 263 

(control). The three next correspond to lipoplexes with DSPE-PEG2000. Before freeze-drying, 264 

no free-siRNA is detectable. The siRNA is complexed by liposomes (1: no visible spot) 265 

confirming our previous complexation results (more than 95% of complexation [23]). The 266 

addition of trehalose does not destabilize the particles and does not release the siRNA. After 267 

freeze-drying and rehydration (spot 2), no free siRNA is visible showing that the particles form 268 

again spontaneously to almost 100%. A positive control with Triton X-100 shows that this 269 

surfactant releases all the siRNA from the lipoplexes (spot 2+Trit.), no broken and no smearing 270 

bands are observed on the gel confirming that the siRNA is stable and protected by the 271 

lipoplexes during the freeze-drying process. Same observations were done for lipoplexes with 272 

DSPE-PEG750 and with ceramide-PEG2000.  273 

The same results were obtained after 25 days of storage at 4°C (figure 4.B). This experiment 274 

confirms that the storage at 4°C during 25 days has no deleterious effect on the siRNA. 275 

Moreover, in another study, we have shown with active siRNA that the freeze-drying process 276 

allows to keep the gene-silencing properties of siRNA (results not shown). The storage stability 277 

is one of the key challenges for a safe translation to the clinic and all these results indicate that 278 

pegylated lipoplexes freeze-dried with 1% of trehalose keep their characteristics during at least 279 

25 days.  280 
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 281 

Figure 4: Complexation efficiency of pegylated lipoplexes evaluated by agarose gel 282 

electrophoresis. (A) Day 0. siRNA: control with free siRNA. 1: lipoplexes before freeze-drying. 283 

2: lipoplexes after freeze-drying. 2+Trit.: lipoplexes after freeze-drying and with 0.5% w/v of 284 

Triton X-100. Conditions 1, 2 and 2+Trit. were performed on lipoplexes with DSPE-PEG2000, 285 

DSPE-PEG750 and ceramide-PEG2000. (B) Same conditions after 25 days of storage at 4°C.  286 

 287 

3.2. Behaviour of lipoplexes in artificial vaginal mucus  288 

3.2.1. Diffusion and size of the lipoplexes 289 

To reach the epithelial tissue, lipoplexes have to diffuse through the vaginal mucus. fSPT was 290 

used to estimate the mobility of lipoplexes in undiluted artificial vaginal fluids and to monitor 291 

their aggregation. fSPT technique makes use of videos of diffusing fluorescently labelled 292 

particles to analyse their individual motion trajectory in complex biological media and 293 

calculates their individual diffusion coefficient (D, µm2/s). In case of freely diffusing particles, 294 

the D distribution so obtained is converted into a size distribution (nm) by using the Stokes-295 

Einstein equation, as previously described [26, 34, 35]. 296 

Fluorescently labelled lipoplexes were incubated in RNAse free water, as a control, and in 297 

undiluted simulated vaginal fluids (SVF), both at 37°C. The movement of all individual lipoplexe 298 

was tracked and registered. From the analysis of the recorded trajectories, the diffusion 299 

coefficients (µm2/s) were calculated in order to compare the diffusion ability of the different 300 

types of lipoplexes inside vaginal mucus.  301 
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Due to the complex ethical and practical procedures to obtain human vaginal fluids (limited 302 

quantity, stability and storage), SVF has been used as a model instead of natural mucus. It 303 

has similar viscosity, pH and osmolality to that of physiological fluids and mucus and thus 304 

should to a high extent resemble the human vaginal mucus [24]. 305 

As demonstrates in figure 5.A, the lipoplexes were able to freely diffuse in RNAse free water. 306 

The peak values of the diffusion distributions varied from 0.7 µm2/s for the lipoplexes with 307 

DSPE-PEG750 to 1.3 µm2/s for unpegylated lipoplexes. In SVF (figure 5.B), the lipoplexes are 308 

still able to diffuse, but slower than in water. This difference of diffusion is highly likely ascribed 309 

to the viscosity of SVF (~ 3 mPa.s) and its complex composition. In SVF, lipoplexes have to 310 

pass through the different components of mucus and particularly through the crosslinked mucin 311 

fibres, which form a highly heterogeneous mesh. These results underline also the necessity to 312 

measure the diffusion directly in the relevant biofluids rather than in diluted fluids. Despite the 313 

mucus barrier, lipoplexes are still capable to diffuse. Concerning the influence of the type of 314 

PEG on the diffusion, figure 5.B shows that lipoplexes with DPSE-PEG2000 and ceramide-315 

PEG2000 are able to diffuse faster than those without PEG and with DSPE-PEG750. This small 316 

difference could be due to the difference of the PEG length. Coating lipoplexes with PEG2000 317 

could further minimize adhesive interactions between nanoparticles and mucus constituents, 318 

compared to PEG750 and without PEG, decreasing aggregation phenomenon and slightly 319 

increasing the diffusion.  320 

 321 
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 322 

Figure 5: Diffusion distributions of lipoplexes without PEG and with DSPE-PEG2000, DSPE-323 

PEG750 or ceramide-PEG2000 following incubation at 37°C in RNAse free water (A) and in SVF 324 

(B), determined by fSPT analysis.  325 

 326 

In order to verify this hypothesis, the size of the lipoplexes was estimated in SVF compared to 327 

water. Although the Dynamic Light Scattering (DLS) is the most common technique for 328 

measuring particle size in aqueous media, it is difficult to directly measure the size in undiluted 329 

biological fluids by this technique. Therefore, fSPT was used and size distributions of the 330 

lipoplexes in SVF were obtained. In water (figure 6.A), mean values between 170 - 230 nm 331 

were observed for all the lipoplexes, PEG or not. These results are in good agreement with 332 

those obtained previously by DLS (section 3.1.2.). In SVF (figure 6.B), only the lipoplexes with 333 

DSPE-PEG2000 remain stable and keep their initial size close to 200 nm with a narrow 334 

distribution. The lipoplexes with ceramide-PEG2000 show a slight aggregation represented by 335 

a shift of the distribution compared to the size distribution in water. For the lipoplexes with 336 

DSPE-PEG750 and without PEG, the aggregation was more pronounced as particles with a 337 

diameter ranging from 300 to 500 nm were measured.  338 

The size distributions outcomes confirm our hypothesis: coating lipoplexes with PEG2000 can 339 

minimize adhesive interactions between nanoparticles and mucus constituents, compared to 340 
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PEG750 and without PEG, decreasing aggregation phenomenon and slightly increasing the 341 

diffusion. The data stand in line with another previous study by J. das Neves et al [25].  342 

Moreover, it is well known that the size is a major requirement for an optimal vaginal diffusion 343 

and it has been demonstrated that particles with a diameter around 200 to 300 nm show the 344 

best diffusive property contrarily to particles with a diameter higher than 500 nm [27, 30].  345 

 346 

 347 

Figure 6: fSPT sizing of lipoplexes without PEG and with DSPE-PEG2000, DSPE-PEG750 or 348 

ceramide-PEG2000 following incubation at 37°C in RNAse free water (A) and in SVF (B).  349 

 350 

3.2.2. Release of the siRNA  351 

The release of siRNA from lipoplexes was evaluated using Fluorescence Correlation 352 

Spectroscopy (FCS). FCS is a technique used to calculate the percentage of complexed fluo-353 

siRNA by the lipoplexes and to follow its release as a function of time, as described previously 354 

[36-39]. This technique monitors the fluorescence intensity fluctuations of molecules diffusing 355 

in and out the focal volume of a confocal microscope. When free siRNA is present in the focal 356 

volume, a fluorescence signal (baseline) proportional to the siRNA concentration is obtained. 357 

Contrariwise, when the siRNA is complexed within the nanoparticles, the concentration of free 358 

siRNA decreases (the baseline decreases also) and peaks with high fluorescence intensity 359 

appear each time a particle passes in the detection volume. Conversely, when the siRNA is 360 

dissociated from the lipoplexes, the concentration of free siRNA increases resulting in an 361 

increase of the baseline [37]. 362 
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In RNAse free water (figure 7.A), the initial percentage of incorporation was high (more than 363 

95%) for all the lipoplexes. These results are in accordance with those obtained previously, by 364 

another quantification technique (Quant-iTTM RiboGreen® RNA assay) [23]. After 4 hours, the 365 

overall siRNA released was limited to maximally 10%. In SVF (figure 7.B), no further release 366 

was observed and a very slight difference can be noticed between the studied lipoplexes, those 367 

with DSPE-PEG2000 retained the totality of complexed siRNA even after 4 hours in SVF. To 368 

reach the cytoplasm of targeted cells, the siRNA must be kept intact in the lipoplexes. The 369 

lipoplexes have to protect it from the mucus components to avoid its degradation. They have 370 

to diffuse into the mucus to reach the targeted cells and release their content only once in the 371 

cytoplasm of these cells reached. The low release of siRNA observed by FCS indicates that 372 

lipoplexes pegylated or not, are stable for at least 4 hours in SVF at 37°C.  373 

 374 

 375 

Figure 7: Percentage of complexed siRNA into lipoplexes according to the time in RNAse free 376 

water (A) and in SVF (B), determined by FCS analysis (n=3).  377 

 378 

In view of the colloidal stability results in both water and SVF (3.1. and 3.2. sections), lipoplexes 379 

grafted with DSPE-PEG2000 seem the most colloidally stable from the all formulations, and 380 

hence were selected for further hydrogel/sponge formulation.  381 

 382 
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3.3. Lipoplexes effect on the characteristics of the sponges  383 

Placebo sponges, with different amounts of polymer (HEC) and plasticizer (PEG) were 384 

previously characterized [19]. As the polymer concentration directly influences the viscosity 385 

and probably the diffusion of lipoplexes, two concentrations of HEC were tested (0.83% and 386 

1.67%). Moreover, the effect of the lipoplexes on the sponge’s characteristics (mucoadhesion, 387 

hardness, deformability and morphology) was also investigated.  388 

3.3.1. Mucoadhesion 389 

HEC polymer has been chosen to prepare the sponges for its well-described mucoadhesive 390 

properties [22]. It has the possibility to anchor the formulation in the administration site and 391 

allows a prolonged delivery of the incorporated material, thereby maximizing the clinical 392 

performance [40]. Moreover, this polymer is considered as a non-toxic and non-irritating 393 

material. Thanks to its biocompatible property, it has been employed in several commercialized 394 

products intended for a vaginal use [4, 18, 41].  395 

In this section, the ability of the sponges to adhere to a partially hydrated mucin disc, mimicking 396 

vaginal conditions, was studied. The mucoadhesive strength (N) was determined by the force 397 

required to separate the disc from the sponge. Figure 8 shows the mucoadhesion of the 398 

placebo sponges, of the sponges containing 1% trehalose and of the sponges containing both 399 

1% trehalose and lipoplexes, in comparison with different vaginal commercialized products. All 400 

the selected commercialized forms are gels (Lubrilan®, Mithra Intim gel®, Lubexxx®, Crinone®), 401 

creams (Gynodaktarin®, Gynoxin®, Canestene®) or a solid system (Preventex®) and are not 402 

specifically intended to be adhesive. They have been chosen to have an idea of their 403 

mucoadhesive capacity, as no reference product and no reference values of mucoadhesion 404 

are available. 405 

It is obvious that all the sponges are significantly more mucoadhesive than the pharmaceutical 406 

products, even at the smallest concentration of HEC (0.83%). Moreover, as demonstrated 407 

before, the concentration of HEC influences the mucoadhesion [19]; sponges with 1.67% HEC 408 

are more adhesive (~ 1.1 N) than sponges with 0.83% (~ 0.7 N) and this can be explained by 409 

the interpenetration mechanism involved in the mucoadhesive interactions [42]. Indeed, the 410 
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intimate contact between the two surfaces, sponge and mucin disc, induces interpenetration 411 

of glycoproteins chains of mucin with polymeric chains of HEC. Assuming that the surface of 412 

the mucin disc in each experiment is similar, the higher the HEC concentration is, the stronger 413 

the mucoadhesive bonds are. Finally, the presence of trehalose and lipoplexes has no 414 

significant influence (p > 0.05) on the mucoadhesion force. Lipoplexes in the sponges do not 415 

influence their mucoadhesion capacity.  416 

 417 

 418 

Figure 8: Adhesion force (N) of placebo sponges (1) - (4), of sponges with 1% trehalose (2) - 419 

(5) and of sponges with 1% trehalose and lipoplexes (3) - (6) compared to pharmaceutical 420 

commercial products. Results are analyzed by a one-way ANOVA, followed by a Dunnett’s 421 

test (n=6). 422 

 423 

3.3.2. Hardness and deformability 424 

Topical application of sponges requires an insight to their behaviour after compression 425 

stresses. These systems should possess suitable mechanical resistance to facilitate the 426 

application inside vagina and also enough resistance to deformation to ensure durability 427 

against shear stress encountered. The hardness is directly correlated with the polymer 428 
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concentration (figure 9.A); sponges with 1.67% are harder than sponges with 0.83% HEC (~ 1 429 

N vs ~ 0.7 N). Moreover, the presence of trehalose and lipoplexes has no significant influence 430 

(p > 0.05) on this characteristic. Since there are no reference values for optimal hardness, the 431 

ability of sponges to be easily removed out of their containers and their malleability were also 432 

analysed. Indeed, all sponges met these conditions; they are hard enough to be extracted 433 

without being broken, they are malleable and retain their shape. Regarding the deformability 434 

(figure 9.B), the slopes of the curves provide information about the deformability of sponges. 435 

An increase in the slope corresponds to an increase deformability of the sponge. Specifically, 436 

the sponges with 1.67% show around 10% of deformability while those containing 0.83% are 437 

deformed at maximum 20%. Again, the presence of trehalose and lipoplexes does not change 438 

the deformability.  439 

 440 

 441 

Figure 9: (A) Hardness (N) and (B) deformability (%) of placebo sponges (1) - (4), of sponges 442 

with 1% trehalose (2) - (5) and of sponges with 1% trehalose and lipoplexes (3) - (6). One-way 443 

ANOVA, followed by the Dunnett’s test is used (n=12).  444 

 445 

3.3.3. Morphology  446 

The morphology and integrity of lipoplexes in sponges were evaluated by SEM analysis. As 447 

demonstrated in figure 10, placebo sponges (A and B) and sponges with 1% trehalose (C and 448 

D) have smooth surfaces, without any irregularities and/or pores. On the contrary, sponges 449 

with lipoplexes (E, F and G) show a rough surface, with small individual spherical asperities. 450 



24 
 

Their size is around 250 nm, in agreement with the sizes obtained using DLS and fSPT in the 451 

previous sections (3.1.2. and 3.2.1.). In order to demonstrate that these spherical asperities 452 

correspond to intact lipoplexes, an elemental analyse was performed. This technique was used 453 

to confirm the presence of the phosphorous atom (P) and thus the presence of the siRNA in 454 

the observed vesicles. Figure 11 shows that the P atom was detected in the sponge containing 455 

1.67% HEC, 1% trehalose and lipoplexes (same results were observed for sponges with 0.83% 456 

HEC while no P detection was observed with placebo sponges, data not shown). This confirms 457 

that observed vesicles are lipoplexes. After being incorporated into the hydrogel and freeze-458 

dried, the lipoplexes retain their morphology, are intact and still have a size between 200 to 459 

300 nm. 460 

 461 
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 462 

Figure 10: SEM images of sponges with 1.67% HEC. (A) - (B) are placebo sponges, (C) - (D) 463 

are sponge with 1% trehalose and (E) - (F) - (G) are sponges containing 1% trehalose and 464 

lipoplexes.  465 

 466 
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 467 

Figure 11: (A) SEM image and (B) phosphorous (P) elemental analysis (SEM-EDX) on sponge 468 

containing 1.67% HEC, 1% trehalose and lipoplexes.  469 

 470 

3.4. Diffusion and stability of lipoplexes in rehydrated sponges 471 

When applied in the vagina, sponges have to rehydrate with mucus to form a hydrogel. 472 

Lipoplexes will have to progressively diffuse through the gel and then through the vaginal 473 

mucus to reach vaginal epithelium. Therefore it is necessary to determine the diffusion ability 474 

of lipoplexes and their stability into the rehydrated sponges. Moreover, the influence of HEC 475 

concentration was also studied. fSPT and FCS techniques, as described previously, were used 476 

for these analyses. Sponges were rehydrated with SVF at 37°C, mimicking vaginal conditions. 477 

As shown in figure 12.A, lipoplexes have different diffusion profiles in the two types of gels 478 

(0.83% vs 1.67 % HEC). In gels with 0.83% HEC, there are two populations of particles: a 479 

large majority with a high peak value (D ~ 0.8 µm2/s) and some others particles with a lower 480 

peak value of the diffusion distribution (D ~ 0.2 µm2/s). Regarding the measured sizes of these 481 

lipoplexes, there are also two populations; a large majority with a diameter at around 200 nm 482 

and also a little fraction of particles with a peak diameter around 90 nm (data not shown). 483 

Indeed, particles with a diameter around 200 - 300 nm can better diffuse in mucus than smaller 484 

with a diameter below 100 nm [16]. Lipoplexes are also able to diffuse in gels with 1.67% HEC 485 

but slower than in the 0.83% HEC gels (D ~ 0.4 µm2/s). The difference in viscosity of the two 486 

hydrogels before and after freeze drying can explain this (100 mPa.s for the 0.83% HEC 487 

hydrogel and 1300 mPa.s. for the 1.67% HEC hydrogel). Moreover, sponges were rehydrated 488 
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with SVF which also increases the viscosity of the final hydrogel. This can consequently further 489 

reduce the mobility of lipoplexes.  490 

The stability of lipoplexes (siRNA release) in the hydrogel (figure 12.B) was next assessed. 491 

Within both types of rehydrated sponges, maximum 8% of siRNA are released after 4 hours at 492 

37°C. The concentration of HEC does not influence the entrapment efficiency of lipoplexes. 493 

They diffuse through rehydrated sponges without releasing their content. 494 

 495 

 496 

Figure 12: Diffusion distributions of lipoplexes (A) and percentage of complexed siRNA as a 497 

function of time (B) in 0.83% and 1.67% HEC sponges; respectively determined by fSPT and 498 

FCS analysis (n=3). 499 

 500 

3.5. Release of lipoplexes outside rehydrated sponges 501 

Finally, the release rate of lipoplexes from rehydrated sponges was monitored over time and 502 

compared for both types of sponges (0.83% vs 1.67% HEC). By employing fSPT, videos were 503 

recorded in order to demonstrate the presence of lipoplexes in the acceptor compartment filled 504 

with SVF and consequently their diffusion outside the rehydrated system (see on figure 1). 505 

Figure 13 represents screenshots of these videos (A=1.67% and B=0.83% HEC). This 506 

qualitative technique is used to show the number of lipoplexes diffusing in the mucus and if it 507 

increases with time.  508 
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It is first observed that no lipoplexes were in the acceptor compartment at time 0, independently 509 

of the HEC concentration. A lag time is necessary for the rehydration of sponges and to allow 510 

the diffusion of lipoplexes. Then, fluorescent spots appear progressively in the acceptor 511 

compartment with a delay difference of 2 hours between the two sponges. Lipoplexes appear 512 

in the acceptor compartment after two hours for 0.83% HEC sponges (B) while they appeared 513 

after four hours for 1.67% HEC sponges (A). These spots confirm that lipoplexes are able to 514 

diffuse through sponges rehydrated with artificial vaginal fluids (section 3.4.). The appearance 515 

delay of lipoplexes in the receiving compartment depends on the HEC concentration; the 516 

higher the concentration of HEC, the longer the rehydration duration of the sponges. Moreover, 517 

increasing the concentration of HEC results in gels with higher viscosity values. These two 518 

phenomena delay the diffusion of the lipoplexes in the gel and in the receiving compartment.  519 

Despite the different viscosities, lipoplexes were able in both cases to diffuse from the 520 

rehydrated sponges even after 6 hours at 37°C. The increased amount of fluorescent spots 521 

suggests an increase of lipoplexes release. This last point demonstrates that the sponges can 522 

be considered as a matrix system allowing a sustained delivery of lipoplexes.  523 

 524 

 525 

Figure 13: Screenshots of fSPT videos of SVF in the acceptor compartment after rehydration 526 

of sponges with 1.67% HEC (A) or with 0.83% HEC (B) and lipoplexes.   527 
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4. Conclusions  528 

This study shows the feasibility of entrapping pegylated lipoplexes into a solid matrix system 529 

for a prolonged delivery of siRNA in vaginal mucus. The sponge system is obtained by freeze-530 

drying and is intended to be administered directly inside vagina in order to treat pathologies 531 

using the gene silencing mechanism. For this, the sponges have to be in situ rehydrated to 532 

form a hydrogel and allow a sustained release of lipoplexes. Hydroxyethyl-cellulose (HEC) was 533 

chosen to prepare the sponges for its mucoadhesive properties. 534 

Vaginal administration of lipoplexes is a challenge since the mucus presents a significant 535 

barrier to effective delivery. To overcome this, 30% of three types of PEG derivatives were 536 

grafted on the lipoplexes; DSPE-PEG2000, DSPE-PEG750 and ceramide-PEG2000. Their 537 

physicochemical characteristics, colloidal stability and their ability to diffuse inside simulated 538 

vaginal fluids (SVF) were tested. Altogether, lipoplexes with DSPE-PEG2000 are the best choice 539 

for the intended application. They have a size close to 200 nm, which is adequate for 540 

mucopenetration. They are stable after freeze-drying and have high complexation efficiency 541 

(> 95%). They have the highest diffusion coefficient and do not aggregate in SVF. Moreover, 542 

they do not release their content even after 4 hours at 37°C. Consequently, lipoplexes with 543 

DSPE-PEG2000 were chosen for incorporation inside HEC hydrogels/sponges.  544 

In order to be administered into the vagina and to ensure a prolonged delivery of the lipoplexes, 545 

the sponges must meet acceptable mechanical characteristics such as ease of manipulation, 546 

low hardness and good bioadhesion. Furthermore, lipoplexes have to be intact inside the 547 

sponges. As our analysis shows, the sponges containing lipoplexes meet these criteria. 548 

Sponges are hard enough to be malleable and flexible; what is important for an easy 549 

application. The maximum percentage of deformation is around 20%, which could be enough 550 

to resist to shear stress inside vagina. The strength necessary to separate the hydrated mucin 551 

disc from the surface of the sponge is almost 0.7 N which is higher than for commercialized 552 

vaginal products and could be sufficient to obtain an appropriate retention during the 553 

therapeutic period. In addition, lipoplexes, incorporated in sponges, retain their morphology 554 

and their original size.  555 



30 
 

To mimic vaginal conditions, sponges were rehydrated with SVF. The diffusion of lipoplexes 556 

inside and outside the rehydrated sponges was measured. Depending on the HEC 557 

concentration, lipoplexes present two different diffusion profiles. The diffusion is slower in the 558 

sponges containing 1.67% of HEC than in those containing 0.83% of HEC. This observation is 559 

the same for the diffusion outside the system. The release rate is lower in the 1.67% HEC 560 

sponges. This can be explained by the fact that sponges with higher quantities of HEC need 561 

more time to be rehydrated and that they have a higher viscosity after in situ rehydration. These 562 

two phenomena delay the diffusion of the lipoplexes inside the gel and in the receiving 563 

compartment. Considering that it takes 4 hours for lipoplexes to diffuse outside rehydrated 564 

sponge with 1.67%, the sponges containing 0.83% HEC should be more suited for an optimal 565 

vaginal treatment.  566 

In conclusion, a new mucoadhesive solid system adapted for a prolonged vaginal delivery of 567 

lipoplexes has been developed. It is easy to handle, able to protect pegylated lipoplexes and 568 

to be rehydrated with vaginal fluids. In future studies, this promising freeze-dried 569 

mucoadhesive sustained released system will be validated with active siRNA. 570 
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