33 research outputs found

    A Cosmic Quest for New Worlds. Characterising Exoplanet Signals via Radial Velocity and Transit Photometry.

    Get PDF
    Since the first unambiguous detection of a planet around a Sun-like star, theinterest in the new and exciting field of exoplanets has grown immensely. Newand exciting developments are seen at a pace unparalleled for most subfieldsof astronomy. In this thesis, I describe the two most successful techniques forexoplanet detection and characterisation – transits and radial velocities – andthe challenges commonly encountered in extracting the planets from the data.Transit photometry allows us to measure the planet radius, while radialvelocity measurements give us the planet’s minimum mass. These methods’true strength, however, manifests in their combination as it allows us to estimatethe true mass, which, together with the radius, gives us the planet’s bulkdensity. This is a powerful quantity, which allows us to construct models andmake predictions about the structure and composition of a planet’s interior,as well as its atmosphere. Zeroing in on the latter two is currently one of thebiggest challenges for exoplanet characterisation.I describe the process of detecting a planet in a stellar light curve, andhow transits and radial velocities are modelled together in order to determinethe planet parameters. This is then followed by the ideal theoreticalapproach, which can be used to study a system in practice. However, the currentchallenges in exoplanet characterisation surpass the ideal case, leading usto explore more complex models. I then discuss the biggest nemesis to planetdiscovery, particularly in radial velocity timeseries – stellar activity, and theproblem of its often stochastic manifestation. A special focus is given to onemethod for its mitigation – modelling the radial velocities alongside activityindicators. This is the core concept of multi-dimensional Gaussian processregression, particularly with the quasi-periodic covariance function, which isused in a large part of this work.Finally, the last part if the thesis shows that while the ideal planet case cansometimes be applicable for quiet stars, as is the case of the TOI-2196 system,extending to non-parametric models, such as Gaussian processes, can help usto detect planets in complicated datasets, as demonstrated by the cases of theTOI-1260, TOI-733, TOI-776 and TOI-1416 systems

    TRAINING OF FACULTY FOR WORK IN ELECTRONIC ENVIRONMENT

    Get PDF
    Helping the improvement of digital competences and more widespread usage of technologies in education are prioritized aims of European commission for 2018 as well. Each next action in support of improvement of those skills would improve the academic teaching and the quality of educational services. This article presents the organization of the conducted training with teachers about working with electronical resources for education in Medical University `Prof. Dr Paraskev Stoyanov` - Varna. The trainings were with intention to increase the knowledge of academic teachers about functional opportunities in the platform `Blackboard Learn+` for the purposes of electronical teaching and her more profound usage like helpful technology in education

    TOI-2196 b: Rare planet in the hot Neptune desert transiting a G-type star

    Get PDF
    The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R â‰Č 2 R⊕) and rocky or they are gas giants with radii of ≳1 RJ. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 ± 0.15 R⊕, which, combined with the mass of 26.0 ± 1.3 M⊕, results in a bulk density of 3.31−0.43+0.51 g cm−3. Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 MJ, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 ± 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of ≳1800 K: a hot sub-Neptune desert devoid of planets with radii of ≈ 1.8−3 R⊕ and a sub-Jovian desert for radii of ≈5−12 R⊕. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present

    TOI-1268b: The youngest hot Saturn-mass transiting exoplanet

    Get PDF
    We report the discovery of TOI-1268b, a transiting Saturn-mass planet from the TESS space mission. With an age of less than 1 Gyr, derived from various age indicators, TOI-1268b is the youngest Saturn-mass planet known to date; it contributes to the small sample of well-characterised young planets. It has an orbital period of P = 8.1577080 \ub1 0.0000044 days, and transits an early K-dwarf star with a mass of M∗ = 0.96 \ub1 0.04 M+, a radius of R∗ = 0.92 \ub1 0.06 R+, an effective temperature of Teff = 5300 \ub1 100 K, and a metallicity of 0.36 \ub1 0.06 dex. By combining TESS photometry with high-resolution spectra acquired with the Tull spectrograph at the McDonald Observatory, and the high-resolution spectrographs at the Tautenburg and OndR ejov Observatories, we measured a planetary mass of Mp = 96.4 \ub1 8.3 Mp and a radius of Rp = 9.1 \ub1 0.6 Rp. TOI-1268 is an ideal system for studying the role of star-planet tidal interactions for non-inflated Saturn-mass planets. We used system parameters derived in this paper to constrain the planeta\u27s tidal quality factor to the range of 104.5-5.3. When compared with the sample of other non-inflated Saturn-mass planets, TOI-1268b is one of the best candidates for transmission spectroscopy studies

    TOI-733 b -- a planet in the small-planet radius valley orbiting a Sun-like star

    Get PDF
    We report the discovery of a hot (TeqT_{\rm eq} ≈\approx 1055 K) planet in the small planet radius valley transiting the Sun-like star TOI-733, as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of PorbP_{\rm orb} = 4.884765−2.4e−5+1.9e−54.884765 _{ - 2.4e-5 } ^ { + 1.9e-5 } days and a radius of RpR_{\mathrm{p}} = 1.992−0.090+0.0851.992 _{ - 0.090 } ^ { + 0.085 } R⊕R_{\oplus}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators, gives a semi-amplitude of KK = 2.23±0.262.23 \pm 0.26 m s−1^{-1}, translating into a planet mass of MpM_{\mathrm{p}} = 5.72−0.68+0.705.72 _{ - 0.68 } ^ { + 0.70 } M⊕M_{\oplus}. These parameters imply that the planet is of moderate density (ρp\rho_\mathrm{p} = 3.98−0.66+0.773.98 _{ - 0.66 } ^ { + 0.77 } g cm−3^{-3}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculate planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world - one of only a few such planets around G-type stars that are well-characterised.Comment: Accepted for publication in A&

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 \ub1 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 \ub1 0.41 M⊕, 33.12 \ub1 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    TOI-132 b: A short-period planet in the Neptune desert transiting a V=11.3 G-type star

    Get PDF
    The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC 8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of similar to 1400 ppm occurring every similar to 2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38(-0.85)(+0.84) m s(-1), which, when combined with the stellar mass of 0.97 +/- 0.06 M-circle dot, provides a planetary mass of 22.40(-1.92)(+1.90) M-circle plus. Modelling the TESS light curve returns a planet radius of 3.42(-0.14)(+0.13) R-circle plus , and therefore the planet bulk density is found to be 3.08(-0.46)(+0.44) g cm(-3). Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3(-2.3)(+1.2) percent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert

    TOI-2196 b : Rare planet in the hot Neptune desert transiting a G-type star

    Get PDF
    Funding: C.M.P., M.F., I.G., and J.K. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18, 177/19, 2020-00104). L.M.S and D.G. gratefully acknowledge financial support from the CRT foundation under Grant No. 2018.2323 “Gaseous or rocky? Unveiling the nature of small worlds”. P.K. acknowledges support from grant LTT-20015. E.G. acknowledge the support of the ThĂŒringer Ministerium fĂŒr Wirtschaft, Wissenschaft und Digitale Gesellschaft. J.S.J. gratefully acknowledges support by FONDECYT grant 1201371 and from the ANID BASAL projects ACE210002 and FB210003. H.J.D. acknowledges support from the Spanish Research Agency of the Ministry of Science and Innovation (AEI-MICINN) under grant PID2019-107061GBC66, DOI: 10.13039/501100011033. D.D. acknowledges support from the TESS Guest Investigator Program grants 80NSSC21K0108 and 80NSSC22K0185. M.E. acknowledges the support of the DFG priority program SPP 1992 "Exploring the Diversity of Extrasolar Planets" (HA 3279/12-1). K.W.F.L. was supported by Deutsche Forschungsgemeinschaft grants RA714/14-1 within the DFG Schwerpunkt SPP 1992, Exploring the Diversity of Extrasolar Planets. N.N. acknowledges support from JSPS KAKENHI Grant Number JP18H05439, JST CREST Grant Number JPMJCR1761. M.S.I.P. is funded by NSF.The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R â‰Č 2 R⊕) and rocky or they are gas giants with radii of ≳1 RJ. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 ± 0.15 R⊕, which, combined with the mass of 26.0 ± 1.3 M⊕, results in a bulk density of 3.31−0.43+0.51 g cm−3. Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 MJ, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 ± 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of ≳1800 K: a hot sub-Neptune desert devoid of planets with radii of ≈ 1.8−3 R⊕ and a sub-Jovian desert for radii of ≈5−12 R⊕. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present.Publisher PDFPeer reviewe
    corecore