397 research outputs found

    Specifying Self-configurable Component-based Systems with FracToy

    Get PDF
    International audienceOne of the key research challenges in autonomic computing is to define rigorous mathematical models for specifying, analyzing, and verifying high-level self-* policies. This paper presents the FracToy formal methodology to specify self-configurable component-based systems, and particularly both their component-based architectural description and their self-configuration policies. This rigorous methodology is based on the first-order relational logic, and is implemented with the Alloy formal specication language. The paper presents the dierent steps of the FracToy methodology and illustrates them on a self-configurable component-based example

    Patients with early rheumatoid arthritis exhibit elevated autoantibody titers against mildly oxidized low-density lipoprotein and exhibit decreased activity of the lipoprotein-associated phospholipase A(2)

    Get PDF
    Rheumatoid arthritis is a chronic inflammatory disease, associated with an excess of cardiovascular morbidity and mortality due to accelerated atherosclerosis. Oxidized low-density lipoprotein (oxLDL), the antibodies against oxLDL and the lipoprotein-associated phospholipase A(2 )(Lp-PLA(2)) may play important roles in inflammation and atherosclerosis. We investigated the plasma levels of oxLDL and Lp-PLA(2 )activity as well as the autoantibody titers against mildly oxLDL in patients with early rheumatoid arthritis (ERA). The long-term effects of immunointervention on these parameters in patients with active disease were also determined. Fifty-eight ERA patients who met the American College of Rheumatology criteria were included in the study. Patients were treated with methotrexate and prednisone. Sixty-three apparently healthy volunteers also participated in the study and served as controls. Three different types of mildly oxLDL were prepared at the end of the lag, propagation and decomposition phases of oxidation. The serum autoantibody titers of the IgG type against all types of oxLDL were determined by an ELISA method. The plasma levels of oxLDL and the Lp-PLA(2 )activity were determined by an ELISA method and by the trichloroacetic acid precipitation procedure, respectively. At baseline, ERA patients exhibited elevated autoantibody titers against all types of mildly oxLDL as well as low activity of the total plasma Lp-PLA(2 )and the Lp-PLA(2 )associated with the high-density lipoprotein, compared with controls. Multivariate regression analysis showed that the elevated autoantibody titers towards oxLDL at the end of the decomposition phase of oxidation and the low plasma Lp-PLA(2 )activity are independently associated with ERA. After immunointervention autoantibody titers against all types of oxLDL were decreased in parallel to the increase in high-density lipoprotein-cholesterol and high-density lipoprotein-Lp-PLA(2 )activity. We conclude that elevated autoantibody titers against oxLDL at the end of the decomposition phase of oxidation and low plasma Lp-PLA(2 )activity are feature characteristics of patients with ERA, suggesting an important role of these parameters in the pathophysiology of ERA as well as in the accelerated atherosclerosis observed in these patients

    On the probabilistic min spanning tree Problem

    Get PDF
    We study a probabilistic optimization model for min spanning tree, where any vertex vi of the input-graph G(V,E) has some presence probability pi in the final instance G′ ⊂ G that will effectively be optimized. Suppose that when this “real” instance G′ becomes known, a spanning tree T, called anticipatory or a priori spanning tree, has already been computed in G and one can run a quick algorithm (quicker than one that recomputes from scratch), called modification strategy, that modifies the anticipatory tree T in order to fit G ′. The goal is to compute an anticipatory spanning tree of G such that, its modification for any G ′ ⊆ G is optimal for G ′. This is what we call probabilistic min spanning tree problem. In this paper we study complexity and approximation of probabilistic min spanning tree in complete graphs under two distinct modification strategies leading to different complexity results for the problem. For the first of the strategies developed, we also study two natural subproblems of probabilistic min spanning tree, namely, the probabilistic metric min spanning tree and the probabilistic min spanning tree 1,2 that deal with metric complete graphs and complete graphs with edge-weights either 1, or 2, respectively

    Numerical Reconstruction of Ejector Rocket Experimental Tests

    Full text link
    Air ejector rocket systems, typical of combined cycle engines for space propulsion applications, have been studied within the ESA Future European Space Transportation Investigations Program. The description and validationof the computational fluid dynamics (CFD) algorithm that has been tuned to simulate the behavior of these systems, and the numerical rebuilding of the ejector rocket experimental tests that were carried out at TNO in The Netherlands are given. The computational developments being presented target the problem of turbulent mixing layer simulation, which is one of the leading phenomena that govern flow behavior inside an ejector rocket. Comparison between experimental and CFD data is given for two validation test cases: a two-dimensional turbulent mixing layer and an axysimmetric ejector in cold flow. Then, the numerical rebuilding of the ejector rocket experimental tests is presented, and the results are discussed with regard to the comparison between numerical and experimental data

    The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity

    Get PDF
    In this paper, we deal with the asymptotic problem of a body of infinite extent with a notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient elasticity. This generalized continuum theory is appropriate to model the response of materials with microstructure. A linear version of the theory results by considering a linear isotropic expression for the strain-energy density that depends on strain-gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lamé constants . The faces of the notch are considered to be traction-free and a boundary-layer approach is followed. The boundary value problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the general notch (infinite wedge) problem. The results show significant departure from the predictions of the standard fracture mechanics

    Selection at the Y Chromosome of the African Buffalo Driven by Rainfall

    Get PDF
    Selection coefficients at the mammalian Y chromosome typically do not deviate strongly from neutrality. Here we show that strong balancing selection, maintaining intermediate frequencies of DNA sequence variants, acts on the Y chromosome in two populations of African buffalo (Syncerus caffer). Significant correlations exist between sequence variant frequencies and annual rainfall in the years before conception, with five- to eightfold frequency changes over short time periods. Annual rainfall variation drives the balancing of sequence variant frequencies, probably by affecting parental condition. We conclude that sequence variants confer improved male reproductive success after either dry or wet years, making the population composition and dynamics very sensitive to climate change. The mammalian Y chromosome, interacting with ecological processes, may affect male reproductive success much more strongly than previously thought

    Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    Get PDF
    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa

    Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization

    Get PDF
    Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images
    corecore