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Abstract.  In this paper, we deal with the asymptotic problem of a body of infinite extent with a 

notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The 

problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient 

elasticity. This generalized continuum theory is appropriate to model the response of materials with 

microstructure. A linear version of the theory results by considering a linear isotropic expression for 

the strain-energy density that depends on strain-gradient terms, in addition to the standard strain 

terms appearing in classical elasticity. Through this formulation, a microstructural material constant 

c  is introduced, in addition to the standard Lamé constants ),(  . The faces of the notch are 

considered to be traction-free and a boundary-layer approach is followed. The boundary value 

problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an 

eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the 

asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the 

general notch (infinite wedge) problem. The results show significant departure from the predictions 

of the standard fracture mechanics.  
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1. Introduction 

 

The present work is concerned with the determination of the asymptotic displacement, strain 

and stress fields that develop in the vicinity of the tip of a notch within the framework of the dipolar 

gradient elasticity. The theory of gradient elasticity was introduced by Toupin (1962) and Mindlin 

(1964) in an effort to model the mechanical behavior of solids with microstructure – see the brief 

literature review on applications and extensions, below. The basic concept of this general theory lies 

in the consideration of a medium containing elements or particles (called macro-media), which are in 

themselves deformable media. This behavior can easily be realized if such a macro-particle is viewed 

as a collection of smaller sub-particles (called micro-media). In this way, each particle of the 

continuum is endowed with an internal displacement field, which can be expanded as a power series 

in internal coordinate variables. Within the above context, the lowest-order theory (Toupin-Mindlin 

theory) is the one obtained by retaining only the first (linear) term of the foregoing series. The 

general framework also appears under the names ‘strain-gradient theory’ or ‘grade-two theory’ or 

‘dipolar gradient theory’.  

In the present study, the most common version of the Toupin-Mindlin theory, i.e. the so-

called micro-homogeneous case (see Section 10 in Mindlin, 1964), is employed to deal with the 

problem of sharp notch. According to this, each material particle has three degrees of freedom (the 

displacement components – just as in the classical theories) and the micro-density does not differ 

from the macro-density. Also, among the three forms of that version, we choose form II of Mindlin 

(1964) which assumes a strain-energy density that is a function of the strain tensor and its gradient. 

In a way, this form is a first-step extension of classical elasticity. We notice that the gradient of strain 

comprises both rotation and stretch gradients. Therefore, this version of the gradient theory is 

different from the standard couple-stress theory (Cosserat theory with constrained rotations) 

assuming a strain-energy density that depends upon the strain and the gradient of rotation (torsion-

flexure tensor) only. Also, the dipolar gradient theory is different from the Cosserat (or micropolar) 

theory that takes material particles with six independent degrees of freedom (three displacement 

components and three rotation components, the latter involving rotation of a micro-medium w.r.t. its 

surrounding medium).  

An interesting feature of the theory stems from the dependence of the strain energy on the 

gradient of strain – the new material constants imply the presence of characteristic lengths in the 

material behavior. These lengths can be related with the size of microstructure. In this way, size 
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effects can be incorporated in the stress analysis in a manner that classical theories cannot afford. 

Typical cases of continua amenable to such an analysis are periodic material structures like those, 

e.g., of crystal lattices, crystallites of a polycrystal or grains of a granular material.  

Besides the fundamental papers by Toupin (1962) and Mindlin (1964), important 

contributions in gradient elasticity are also contained in the works by Green and Rivlin (1964), 

Bleustein (1967), Mindlin and Eshel (1968), Germain (1973) and Maugin (1979). In a brief literature 

review now, it should be noticed that the Toupin-Mindlin theory had already some successful 

applications on stress concentration elasticity problems concerning holes and inclusions, during the 

sixties and the seventies (see e.g. Cook and Weitsman, 1966; Eshel and Rosenfeld, 1970; 1975). 

More recently, this approach and related extensions have been employed to analyze various 

problems involving, among other areas, wave propagation (see e.g. Vardoulakis and Georgiadis, 

1997; Georgiadis et al., 2000; Georgiadis et al., 2004), fracture (Wei and Hutchinson, 1997; Zhang et 

al., 1998; Chen et al., 1998; 1999; Shi et al., 2000b; Georgiadis, 2003; Grentzelou and Georgiadis, 

2005; 2008; Radi, 2008; Gourgiotis and Georgiadis, 2009), plasticity (see e.g. Fleck et al., 1994; 

Vardoulakis and Sulem, 1995; Begley and Hutchinson, 1998; Fleck and Hutchinson, 1997; 1998; 

Gao et al. 1999; Huang et al., 2000; 2004; Hwang et al., 2002; Radi, 2004; 2007; Gurtin, 2004; 

Bardella and Giacomini, 2008), mechanics of defects (Lazar and Maugin, 2005; Lazar and Kirchner, 

2007), and stress concentration due to discrete loadings (Lazar and Maugin, 2006; Georgiadis and 

Anagnostou, 2008). In addition, efficient numerical techniques (see e.g. Oden et al. 1970; Shu et al., 

1999; Amanatidou and Aravas, 2002; Tsepoura et al., 2002; Engel et al., 2002; Tsamasphyros et al., 

2007; Giannakopoulos et al., 2006; Markolefas et al., 2008a; 2008b) have been developed to deal 

with problems analyzed by the Toupin-Mindlin theory.  

Regarding now appropriate length scales for strain gradient theories, it is difficult, in general, 

to link the material length scales involved in the modeling with specific sizes of the underlying 

microstructure (see e.g. Gurtin, 2004; Bardella and Giacomini, 2008). On the other hand, Zhang et 

al. (1998) noted that although strain gradient effects are associated with geometrically necessary 

dislocations in plasticity, they may also be important for the elastic range in microstructured 

materials. For instance, Chen et al. (1998) developed a continuum model for cellular materials and 

found that the continuum description of these materials obey a gradient elasticity theory. In the latter 

study, the intrinsic material length was naturally identified with the cell size. Also, in wave 

propagation dealing with electronic-device applications, surface-wave frequencies on the order of 

GHz are often used and therefore wavelengths on the micron order appear (see e.g. White, 1970; 

Farnell, 1978). In such situations, dispersion phenomena at high frequencies can only be explained 
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on the basis of a gradient elasticity theory (Georgiadis et al., 2004). In addition, the latter study 

provides an estimate for a microstructural parameter (i.e. the so-called gradient coefficient c ) 

employed in some simple material models. This was effected by considering that the material is 

composed wholly of unit cells having the form of cubes with edges of size h2  and comparing the 

forms of dispersion curves of Rayleigh waves obtained by the Toupin-Mindlin approach with the 

ones obtained by the atomic-lattice analysis of Gazis et al. (1960). It was found that c  is of the order 

of  21.0 h . Another work that relates the material length scales involved in the modeling with the 

size of the microstructure is due to Chang et al. (2003). The latter associated the microstructural 

material constants of the Toupin-Mindlin theory with the particle size, the packing density and the 

inter-particle stiffness in a granular material. Further, Shi et al. (2000a) have linked the internal 

constitutive length   in the mechanism-based strain gradient plasticity with the Burgers vector b . 

Generally, theories with elastic strain gradient effects are intended to model situations where the 

intrinsic material lengths are of the order of 0.1 – 10 microns (see e.g. Shi et al., 2000b). Since the 

strengthening effects arising from strain gradients become important when these gradients are large 

enough, these effects will be significant when the material is deformed in very small volumes, such 

as in the immediate vicinity of crack tips, notches, small holes and inclusions, and micrometer 

indentations. 

We now focus attention on our specific subject, i.e. the problem of a sharp notch (re-entrant 

corner) in a body of infinite extent under conditions of plane or anti-plane strain, within form II of 

gradient elasticity. Notch problems have extensively been studied in the context of classical 

elasticity. Both analytical and asymptotic techniques have been proposed to explore the nature of the 

displacement and stress fields in such problems. Some of the earlier contributions are those by Knein 

(1927), Brahtz (1933) and Williams (1952), who treated the problem of the elastic plane notch 

(infinite wedge) under various combinations of homogeneous boundary conditions. Other related 

studies, within classical elasticity, are due to Sternberg and Koiter (1958), Karp and Karal (1962), 

Neuber (1963), Harrington and Ting (1971), Gregory (1979), Leguillon (1988), Dundurs and 

Markenscoff (1989), Movchan and Nazarov (1990; 1992), and Morozov and Narbut (1995). A 

thorough overview on the subject and an extensive list of references can be found in the review 

article by Sinclair (2004). Finally, we should mention that, within the framework of standard couple-

stress elasticity, Bogy and Sternberg (1968) treated the problem of the orthogonal wedge subjected to 

a distribution of shear tractions and resolved a paradox occurred when the problem is treated by 

classical elasticity. Incidentally, we note that the standard couple-stress elasticity and form II of 
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gradient elasticity give results for plane-strain boundary value problems that do not share the same 

general features of solution behavior, e.g. order of singularities and crack-face displacements in 

crack problems (Grentzelou and Georgiadis, 2005; Gourgiotis and Georgiadis, 2008; 2009). This can 

be realized from the fact that not only the number of traction boundary conditions are different in the 

two cases (four in form II of gradient theory, three in couple-stress theory) but, also, the governing 

equations are different. 

However, as far as the authors are aware, there are no analytical or numerical results in the 

literature regarding plane-strain or anti-plane strain notch problems in dipolar gradient elasticity. A 

few results concern the limit cases of a crack (Shi et al., 2000b; Georgiadis, 2003; Grentzelou and 

Georgiadis, 2005; Georgiadis and Grentzelou, 2006; Wei, 2006; Karlis et al., 2007; Grentzelou and 

Georgiadis, 2008; Markolefas et al. 2008; Gourgiotis and Georgiadis, 2009) and of a half-space 

(Lazar and Maugin, 2006; Georgiadis and Anagnostou, 2008).  

Here, we treat both notch problems asymptotically (for a general angle oo a 18090   of the 

re-entrant corner) and obtain results that are in agreement with the results of the aforementioned limit 

cases. Our analysis is based on the Knein-Williams technique (Knein, 1927; Williams, 1952; Karp 

and Karal 1962; Barber, 1992), according to which a set of  ,r  polar coordinates is attached to the 

tip of the notch and the displacement field is expanded as an asymptotic series of separated variable 

terms, each satisfying the field equations and the traction-free boundary conditions on the faces of 

the notch. This procedure leads to an eigenvalue problem, which, along with the restriction of a 

bounded potential energy, provides the asymptotic displacement, strain and stress fields. The 

asymptotic results show significant departure from those of classical elasticity: the strain field is 

always bounded (finite) at the vicinity of the tip of the notch. This finding is in agreement with the 

uniqueness theorem for crack problems in gradient elasticity, where the necessary conditions for 

uniqueness are bounded displacements and strains around a crack tip (Grentzelou and Georgiadis, 

2005).  

 

 

2. Basic equations of the dipolar gradient elasticity 

 

Here, we briefly present the basic ideas and equations of form II of Mindlin’s theory of 

dipolar gradient theory of small strains and displacements. For more details, we refer the reader to 

recent papers by the third author (Georgiadis et al., 2004; Georgiadis and Grentzelou, 2006) and to 
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the fundamental papers by Toupin (1962), Mindlin (1964), Bleustein (1967), and Mindlin and Eshel 

(1968). 

The theory can be introduced by the following form of the first law of thermodynamics 

 

pqrrpqpqpq m   E   ,                                                                                                   (1) 

 

where small strains and displacements are assumed, and a Cartesian rectangular coordinate system 

321 xxOx  is considered for a 3D continuum (indicial notation and the summation convention will be 

used throughout). In the above equation,     pp x  , a superposed dot denotes time 

derivative, the Latin indices span the range (1,2,3),   is the mass density of the continuum, E  is the 

internal energy per unit mass,    qppqqppq uu   21  is the linear strain tensor, qu  is the 

displacement vector, pq  is the monopolar stress tensor, and rpqm  is the dipolar (or double) stress 

tensor (a third-rank tensor) expressed in dimensions of 1]length][force[  . For reference, we also write 

the definitions of the rotation tensor   pqqppq uu   21  and the rotation vector 

  lkqklq ue  21 , with qkle  being the Levi-Civita permutation symbol. 

The dipolar stress tensor follows from the notion of dipolar forces, which are anti-parallel 

forces acting between the micro-media contained in the continuum with microstructure. As explained 

by Green and Rivlin (1964), and Jaunzemis (1967), the notion of multipolar forces arises from a 

series expansion of the mechanical power containing higher-order velocity gradients. 

Next, in accord with (1), the following form is taken for the strain-energy density W   

 

 pqrpqWW   ,  .                                                                                                             (2) 

 

In what follows, we assume the existence of a positive definite function  pqrpqW  , . Of course, (2) 

allows for non-linear constitutive behavior as well, but in the present study we will confine attention 

to a linear constitutive law. Further, stresses can be defined in the standard variational manner 

 

pq
pq

W







   ,         pqr
rpq

W
m




   ,                                                                               (3a,b) 
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where the following symmetries for the monopolar and dipolar stress tensors are noticed: qppq    

and rqprpq mm  .  

Then, the equations of equilibrium (global equilibrium) and the traction boundary conditions 

along a boundary (local equilibrium) can be obtained from variational considerations (Mindlin 1964; 

Bleustein, 1967). Assuming the absence of body forces, the appropriate expression of the Principle 

of Virtual Work is written as (Bleustein, 1967) 

 

   
V pqrrpqpqpq dVm    

S rq
n

qrS q
n

q dSuTdSut  )()(   ,                                     (4) 

 

where the symbol   denotes weak variations and it acts on the quantity existing on its right. In the 

above equation, )(n
qt  is the true force surface traction, )(n

pqT  is the true double force surface traction, 

and pn  is the outward unit normal to the boundary along a section inside the body or along the 

surface of it. In the present study, we generally assume the absence of body forces, in which case the 

equations of equilibrium and the traction boundary conditions take the following form  

 

  0 rpqrpqp m     in    V  ,                                                                                             (5) 

      rpqprjjrpqrprpqrpqp
n

q mnnnDmnDmnP  )(     on    bdy  ,                                    (6) 

rpqpr
n

q mnnR )(     on    bdy  ,                                                                                                (7) 

q r p rpqE n k m        on    edge C  ,                                                                                          (8) 

 

where V  is the region (open set) occupied by the body, bdy  denotes any boundary along a section 

inside the body or along the surface of it,      DnD ppp   is the surface gradient operator, 

   ppnD   is the normal gradient operator. Further, C  denotes every edge formed by the 

intersection of two portions, say 1S  and 2S  of the (closed) bounding surface S , and the double 

brackets    indicate that the enclosed quantity is the difference between the values on 1S  and 2S . 

Also, the vector k  is defined as prrpqq nsek  , where qs  is the unit tangent vector to the curve C . 

Furthermore, according to Bleustein (1967),   )()()()( n
pqp

n
pqprr

n
q

n
q TDTnnDtP   is the auxiliary force 
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traction, )()( n
pqp

n
q TnR   is the auxiliary double force traction and q p pqE k T     is a line load defined 

on the edge C .  

Introducing the constitutive equations of the theory is now in order. The simplest possible 

linear and isotropic equations result from the following strain-energy density function (Georgiadis et 

al., 2004; Lazar and Maugin, 2005) 

 

         pqrpqrqqrpprpqpqqqpp ccW   2121  ,                              (9)    

 

where c  is the gradient coefficient having dimensions of [length]2, and  ,  are the standard Lamé 

constants with dimensions of 2]length][force[  . In this way, only one new material constant is 

introduced with respect to classical linear isotropic elasticity. Combining (3) with (9) provides the 

following constitutive equations 

 

pqjjpqpq  2  ,       pqrpqjjpqrrpq ccm   2  ,                             (10a,b) 

 

where pq  is the Kronecker delta.  

As Lazar and Maugin (2005) pointed out, the particular choice of (9) is physically justified 

and possesses a notable symmetry. To expose this symmetry, we first consider the general expression 

(definition) of the strain-energy density  


 pqrpq

pqrrpqpqpq dmdW



00

, which for a linear 

constitutive law takes the form     pqrrpqpqpq mW   2121 . Then, by virtue of (10b) the strain-

energy density in (9) takes the form      pqrpqrpqpq cW   2121 , which exhibits symmetry 

with respect to both strain and standard stress. This simple form of the Toupin-Mindlin dipolar 

gradient elasticity is therefore a strain gradient theory as well as a stress gradient theory. 

Further, as shown by Georgiadis et al. (2004), the restriction of positive definiteness of W  

requires the following inequalities for the material constants appearing in the theory: 

  0,0,023  c . In addition, stability for the field equations in the general inertial case 

was proved and to accomplish this, the condition 0c  is a necessary one (Georgiadis et al., 2004).  

In the present study, we formulate the 2D plane strain and anti-plane shear notch problems by 

considering the expression (9) for the strain-energy density W . Combining (5) with (10) leads to the 

field equations of the problem. 
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3. The notch problem in plane-strain 

 
The geometry of the two notch problems in plane-strain (under symmetric and anti-symmetric 

loading) is shown in Fig. 1. For convenience in the analysis, we will use polar coordinates  ,r  with 

orthonormal base vectors  ee ,r . The faces of the notch are taken along the planes a  

( en  ) and are assumed to be traction-free.  

 
 
 

 

 

 

 

 

 

 

               

                                               

                                         

                                                         

 

                                                            (a)                                                                         (b) 

 

Fig. 1  The notch problem in plane-strain:  

(a) symmetric loading, and (b) anti-symmetric loading. 

 

 

The displacement field takes the following general form 

 

  0,  ruu rr  ,          0,   ruu  ,        0zu  ,                                   (11) 

 

whereas the stresses are written as (cf. (10)) 

 

)()2( 1
 uuru rrrrr    ,     rrθθrθθ uλuurμλτ   )()2( 1  ,                                        

a

a


r

a

a

r


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θrθrθθr uμuurμτ   )(1  ,                                                                                     (12a-c) 

rrrrrr cm   ,     rrrr cm   ,    rr cm   ,      rrrrr crm 21    ,                           

    
rrrr crm 1  ,     rcrm 21    ,                                          (13a-f) 

 

where     rr   and       .  

Further, we introduce the so-called total stresses  ,rt t   stemming from the monopolar 

traction boundary conditions (see e.g. Georgiadis and Grentzelou, 2006; Gourgiotis and Georgiadis, 

2009). To define them, we consider the plane  const., r . The normal unit vector to this plane is 

given as en . Then, the total stresses along this plane are defined, in polar coordinates, as      

 

( ) 1 1 1 1rn rr r r
r r r rr r r

mm m
P t m m m

r r r r r r
 

    


 
       

  
 ,                                 (14) 

rr
rrn m

r
m

r

m

rr

m

r

m
tP 


 
 211)( 













  .                                            (15) 

 

The details for the derivation of (14) and (15) is given in Appendix A. These quantities are used to 

express certain boundary conditions, but they do not possess tensor properties. 

Finally, substituting (12) and (13) in (5) leads to the following system of coupled PDEs of the 

fourth order for the displacement components 

  

 2 2 22 0r r rs c s r s r s 
         ,                                                   (16a) 

 2 2 22 0rs c s r s r s   
         .                                                                                 (16b) 

 

In the above equations,        22122
  rr rr  is the 2D Laplace operator, and the 

quantities  ssr ,  are given by 

 

)()21()()1(2 11111
  urururururus rrrrrrr

   ,               (17a) 

)()21()()1(2 11111
  ururuurururs rrrrrr

   ,               (17b) 
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where )(2    is the Poisson’s ratio. The details of the derivation of (16) are also given in 

Appendix A. 

As expected, in the limit 0c  the Navier-Cauchy equations of classical linear isotropic 

elasticity are recovered from (16). Indeed, the fact the latter equations have an increased order w.r.t. 

their limit case (recall that the Navier-Cauchy equations are PDEs of the second order) and the 

coefficient c  multiplies the higher-order term reveal the singular-perturbation character of the 

gradient theory and the emergence of associated boundary-layer effects.  

According to the Knein-Williams asymptotic technique in classical elasticity (Knein, 1927; 

Barber, 1992) and to the HRR field in classical and strain-gradient plasticity (Hutchinson, 1968; Rice 

and Rosengren, 1968; Chen et al., 1999), an asymptotic expansion of the displacement field is 

attempted in the form 

 

      ..., )2()1(   r
s

r
p

r UrUrru  ,         ..., )2()1(
θ    UrUrru sp  ,               (18a,b) 

 

where  sp,  are (in general) complex numbers and  )(b
rU  and  

)(bU  ( 1,2b  ) are angular 

functions.  

Now, if the first terms in the above expansions are to be singled out as the dominant ones, 

Re( ) Re( )p s , etc. Our search will be restricted only to the dominant terms in such expansions 

which, accordingly, will give the most singular solution and, thus, the dominant behavior of the 

stress fields as 0r .  

The boundary conditions for the traction-free notch at a  read  

 

  0,  art  ,      0,  art r  ,      0,  arm r  ,      0,  arm  .                     (19a-d) 

 

Further, if only the dominant singular terms are retained in the asymptotic fields, the 

governing equations in (16) become 

 

02 222  
 srsrs rr  ,                                                                                         (20a) 

02 222  
rsrsrs   .                                                                                         (20b) 

 

The general solution to (20) is obtained as 
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  )3(cos)1cos()1cos( 321  pApApAru p
r  

  )3(sin)1sin()1sin( 321  pBpBpBr p  ,                               (21) 

 














 

 )1sin()3sin(

)87(

)85(
)1sin( 432 pAp

p

p
ApAru p  














 

 )1cos()3cos(

)87(

)85(
)1cos( 432 pBp

p

p
BpBr p  ,         (22) 

 

where the unknown constants bA  and bB  (with 4,3,2,1b ), correspond to symmetric and anti-

symmetric loadings, respectively.  

Next, we utilize the constitutive equations in (12) and (13), retain only the most singular 

terms and write the boundary conditions in terms of displacements 

 

    00, 1111
 mrmrmrmrmmart rrrrrrrrrrrr            

     2 2 2 23 4 3 2 5 6r r r rr u u u r u                       

   0221 32233   uuurururur rrrrrr   ,               (23) 

 

    020, 111
rrrrrr mrmrmrmmart   

   2 2 2 3 3 23 4 2 2 3 2 2r r r r r rr u u r u u r u                        

                                           2 2 31 4 2 2 2 2 0r r r r r rr u u r u r u u                    ,                 (24) 

 

    0)2()2(0, 21  
 uuruurarm rrrr  ,                                  (25) 

 

      0)()2()()1(0, 121  
  uuruururarm rrrr  .   (26) 

 

Now, Eqs. (23)-(26) together with (21) and (22) form an eigenvalue problem. For the 

existence of a non-trivial solution, the determinant of the coefficients of ( bb BA , ) should vanish and 

this gives the following equations for p : 

 

Symmetric loading 
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              4 2
1 2 1 2 1 cos 2 1 cos 4 1 2 cos 2 1p p p p p a a p p a

           
 

      cos 2 3 2 5 4 1 cos 4 1 0p p a p a


       


 ,                    (27a) 

Anti-symmetric loading 

 

              4 2
1 2 1 2 1 cos 2 1 cos 4 1 2 cos 2 1p p p p p a a p p a

           
 

      cos 2 3 2 5 4 1 cos 4 1 0p p a p a


       


 .                   (27b) 

 

It is worth noting that, in gradient elasticity, the eigenvalues p  depend, in general, not only 

upon the angle of the notch, as in classical elasticity, but also upon the Poisson’s ratio ν . Further, we 

note that the transcendental equations (27a) and (27b) exhibit an infinite number of solutions. 

However, not all of them are allowed by the so-called energy criterion (see e.g. Barber, 1992, for the 

respective problem of classical elasticity). More specifically, in our analysis we consider the body 

under remotely applied loading, without any concentrated load applied inside the body or on the 

boundary. Therefore, the total strain-energy in a small region surrounding the notch apex (as 0r ) 

should vanish. This restricts the number of  acceptable eigenvalues. It can further be checked that the 

potential energy U  per unit length (along the z-axis) in a small circular area around the tip of the 

notch is given by 
0

0

a r

a
U W r dr d


    (Barber, 1992). In our case, it derives from (9) that the strain-

energy density W  behaves at most as     22 2 2 2 4p
pq pW r u r r        . Consequently, the 

potential energy can be written in the form 
0 2 3

0
(const.)

r pU r dr d  , which is bounded in the 

vicinity of the corner point, if and only if 132 p  1p .  

Nevertheless, it turns out that the eigenvalue 1p  satisfies, as well, the characteristic 

equations in  (27) for all angles a . In this case, the field equations in (20) admit the following 

special solution 

 

   2cos2sin2cos2sin 654321 CCCCCCrur    ,                             (28a) 
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 

















 




 2sin

432

1
2cos

)43(2

)65(
2sin2cos 5432 CCCCru  

  














 876 2cos
432

1
2sin CCC 


   .                           (28b) 

 

The boundary conditions (23)-(26) necessarily imply that 07654  CCCC . Also, we set 

08 C  since this term in u  corresponds to a rigid body motion. Now, it can readily be shown that 

the above displacement field results in a constant strain field, and also, that it does not contribute to 

the dipolar stress field (note that 0r pq  , in this case). Therefore, in this special case, the strain-

energy density W  behaves as in classical elasticity, i.e.   22 2 2p
pq pW u r r      . Consequently, 

the eigenvalue 1p  is a physically admissible eigenvalue since it leads, for all angles a , to a 

bounded potential energy. The existence of the displacement field associated with the eigenvalue 

1p  was first noticed by Radi (2008) for a mode III crack in couple-stress elasticity and by Aravas 

and Giannakopoulos (2009) for the plane-strain modes of fracture in dipolar gradient elasticity. 

Finally, we note that the case 1p  is excluded since it always leads to an unbounded potential 

energy.  

In light of the above, the displacement field is finally written as 

 

Symmetric loading 

 

   1 3 1 2 3cos 2 cos( 1) cos( 1) cos ( 3)p
ru r C C r A p A p A p            ,                (29a) 

 

3 2 3 4

( 5 8 )
sin 2 sin( 1) sin( 3) sin( 1)

( 7 8 )
p p

u C r r A p A p A p
p

   


  
          

 ,       (29b) 

 

Anti-symmetric loading 

 

 2 1 2 3sin 2 sin( 1) sin( 1) sin ( 3)p
ru C r r B p B p B p           ,                             (30a) 
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2 2 3 4

( 5 8 )
cos cos( 1) cos( 3) cos( 1)

( 7 8 )
p p

u C r r B p B p B p
p

   


  
         

 ,        (30b) 

 

where 1p . It is noted, that due to the singular perturbation character of the field equations and the 

boundary conditions, the lower-order terms  321 C,,CC  are coupled with terms of order  3rO  to 

satisfy the conditions of vanishing total stresses at the faces of the notch (Eqs. (19a,b)). Further, it 

follows from (12)-(15) that the monopolar and dipolar stresses behave as 1~ pr   (bounded variation) 

and 2~ pr   (singular variation), respectively, whereas the total stresses exhibit the most singular 

behavior 3~ pr   in the vicinity of the notch apex. The general expressions for the strain and stress 

fields are given in Appendix B. Next, from the characteristic equations (27a) and (27b), we infer that 

for angles in the range oo a 18090   the exponent p  is decreasing monotonically. 

Now, Fig. 2a depicts the variation of the exponent of the monopolar stress ( 1p ) in both 

cases of gradient and classical elasticity. We observe, therefore, that the monopolar stress and the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2a Variation of the exponent of the monopolar stress with respect to the notch angle a  

for symmetric loading (SL) and anti-symmetric loading (AL). 

 

 

 

)1( p

oooo o o o o oo

LS
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Fig. 2b Variation of the exponent of the total stress in gradient elasticity with respect to the notch angle a  

for symmetric loading (SL) and anti-symmetric loading (AL). 

 
 

 

strain fields at the apex of a sharp notch are not singular in dipolar gradient elasticity. In addition, 

Fig. 2b depicts the variation of the exponent of the total stress ( 3p ) in gradient elasticity. It is 

observed that as the notch angle a  is reduced from 180  to 90 , the strength of the singularity falls 

monotonically from 5.1  to 1 . The most singular eigenvalue occurs in the case of a crack 

( 180a   ). In general, the exponent p  depends not only upon the notch angle a  but also upon the 

Poisson’s ratio  . But, the dependence upon   is only marginal. 

 

 

4. The limit case of a crack in plane-strain 

 

The limit case 180a   , which corresponds to the mode I and mode II crack problems is 

examined now in detail. In this case, both plane strain modes share the same characteristic equation, 

viz. 

      204cos121 24 npppp    ,  ,...2,1,0 n  .                                         (31) 

)3( p

a
oooo o o o o oo

LS

LA
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In this case there is no dependence of the exponent p  upon the Poisson’s ratio. Then, according to 

the energy criterion the most singular admissible value of the exponent is 23p . Also, from Eqs. 

(29) and (30), it is clear that the case 1p  should also be taken into account.  

 Below, we present separately the cases of mode I and mode II crack. 

 

Mode I crack 

 

In view of the symmetry of the mode I problem, we obtain the following displacement field  

 

  











2

3
cos

)3241(

)1611(
3

2
cos)83(2cos 23

131



 rACCrur   















2

5
cos

2

3
cos

)3241(

)1611(
323

2





rA  ,                           (32a) 

 













2

3
sin

)3241(

)1613(
3

2
)sin8(92sin 23

13



 rArCu  

  













2

5
sin

2

3
sin

3241

)1613(
323

2

θθ

ν

ν
rA  ,                             (32b) 

 

where  31,CC  are amplitude factors for the lower-order crack-tip fields and  21, AA  are the 

amplitude factors for the dominant term of order 23 . It is noted, that the lower-order terms do not 

contribute to the energy release rate as well as to the crack-tip opening displacement (Gourgiotis and 

Georgiadis, 2009). However, these terms produce a constant strain field at the crack tip. A detailed 

discussion about the significance of these terms and their connection to fracture criteria can be found 

in Aravas and Giannakopoulos (2009). 

Further, by virtue of (32), it is found that the strains and the monopolar stresses are bounded 

at the crack-tip region 
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   1 2
1 3 1

33 483 3
cos 2 cos 3 8 cos

2 41 32 2 2rr C C r
     


 
      

 

 




 





2

5
cos

2

3
cos

3241

4833

2

3 21
2



 r  ,                                         (33a) 

 

    



 





2

cos85
2

3
cos

3241

1617

2

3
2cos 21

131



 rCC  

 




 





2

5
cos

2

3
cos

3241

1617

2

3 21
2



 r  ,                                         (33b) 

 

 1 2
3 1

23 323 3
sin 2 sin sin

2 41 32 2 2r r C r 

     


 
      

 

 




 





2

5
sin

2

3
sin

3241

3223

2

3 21
2



 r  ,                                          (33c) 

 

  









2

3
cos

3241

)3233(

2
cos332cos2212 21

131



 rACCrr  





 





2

5
cos

2

3
cos

3241

)3233(
3 21

2



 rA  .                        (34a) 

 

  









2

3
cos

3241

)3217(

2
cos532cos2212 21

131



 rACC  

                               



 





2

5
cos

2

3
cos

3241

)3217(
3 21

2



 rA  ,                                   (34b) 

 











2

3
sin

3241

)3223(

2
sin32sin2 21

13



  rACrr  





 





2

5
sin

2

3
sin

3241

)3223(
3 21

2



 rA  .                                    (34c) 

 

Also, the dipolar and the total stresses are written as 
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








 

2

3
cos

3241

)3231(

2
cos3

2

3 21
1





 rA
c

m r  

                               



 




 

2

5
cos

2

3
cos

3241

)3231(

2

3 21
2





rA
c

 ,                                  (35a) 

 





 



  

2

5
sin

2

3
sin

2

3

2

3
sin

2
sin

2

3 21
2

21
1


 rA

c
rA

c
m  ,                         (35b) 

 










 

2

3
cos

3241

)3233(

2
cos3

2

3 21
1





rA
c

mrrr  

                               



 




 

2

5
cos

2

3
cos

3241

)3233(

2

3 21
2





rA
c

 ,                                 (35c) 

 










 

2

3
sin

3241

)3223(

2
sin

2

3 21
1





 rA
c

m rr  





 




 

2

5
sin

2

3
sin

3241

)3223(

2

3 21
2





rA
c

 ,                                    (35d) 

 










 

2

3
sin

3241

)327(

2
sin7

2

3 21
1





 rA
c

m rr  





 




 

2

5
sin

2

3
sin

3241

)327(

2

3 21
2





rA
c

 ,                                     (35e) 

 










 

2

3
cos

3241

)3217(

2
cos5

2

3 21
1





 rA
c

mr  





 




 

2

5
cos

2
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Mode II crack 

 

In view of the anti-symmetry of the mode II problem, we obtain the corresponding 

displacement field as 
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where the constants 2C  and  21, BB  are left unspecified by the asymptotic analysis. Note, that the 

linear terms in r  do not contribute to the crack sliding displacement ru . Indeed, for   , the 

linear term in (37a) vanishes. 

Further, the strains and the monopolar, dipolar and total stresses are written as 
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Regarding now the previous asymptotic results, we notice the following points: 

(i) The total stresses (Eqs. (36), (41)) exhibit a stronger singularity ( 23~ r ) than the one 

predicted by standard linear fracture mechanics. This type of singularity was also observed in 

previous studies of crack problems in gradient elasticity (see e.g. Shi et al., 2000b; Georgiadis, 2003; 

Karlis et al., 2007; Markolefas et al. 2008; Gourgiotis and Georgiadis, 2009). In addition, such a 

strong singularity was suggested by the experimental evidence of Prakash et al. (1992) in extremely 

brittle fracture. A previous analytical study (Gourgiotis and Georgiadis, 2009), employing the 

method of singular integral equations, has shown that these stresses are compressive ahead of the 

crack-tip exhibiting a cohesive character. The length of this cohesive zone is on the order of the 

internal material length 1 2c . Similar results were obtained by Chen et al. (1999) in the theory of 

phenomenological strain-gradient plasticity (Fleck and Hutchinson, 1997) with the plastic work 

hardening exponent 5n  and by Shi et al. (2000b) in the limit of gradient plasticity for an 

incompressible material with the plastic work hardening exponent 1n . It should be noted however, 

that there are several stress measures involved in gradient elasticity, i.e. the monopolar stresses, the 

dipolar stresses and the total stresses. Contrary to the classical elasticity, the monopolar stresses 

(Eqs. (34), (39)) are found to be bounded at the tip of the crack whereas, the dipolar stresses (Eqs. 

(35), (40)) and the total stresses have a singular character. The important thing to notice, however, is 
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that despite the singular character of these higher order stresses, the J -integral is bounded 

(Georgiadis, 2003; Gourgiotis and Georgiadis, 2009). In particular, it was shown in Gourgiotis and 

Georgiadis (2009) that when the microstructure of the material is taken into account, the ratio 

.clasJJ , where .clasJ  is the expression of the J -integral in classical elastic fracture mechanics, 

decreases monotonically with increasing values of ac 21  ( 2a  being the length of the crack). This 

finding shows that the gradient theory predicts a strengthening effect since a reduction of the crack 

driving force takes place as the material microstructure becomes more pronounced. An analogous 

result was found by Shi et al. (2004), where the decrease of the values of J  was attributed to 

‘shielding’ dislocations that shield the crack-tip.  

(ii) Another important result is that the strain field is bounded at the tip of crack. Thus, the 

necessary condition for uniqueness of the crack problem in form II of Mindlin’s gradient elasticity 

(Grentzelou and Georgiadis, 2005) is fulfilled by the present asymptotic solution. Further, it is noted 

that the crack faces close more smoothly ( 3 2~ r ) as compared to the classical result. This cusp-like 

closure has been observed in the experiments by Elssner et al. (1994) and in the results of an analysis 

through discrete dislocations around a crack tip by Cleveringa et al. (2000).  

 

 

5. Equilibrium considerations for the plane-strain notch problem 

 

In this Section, we proceed to consider the equilibrium of a small circle of radius 0r  

surrounding the tip of a crack (see Fig. 3), in order to elucidate the role of the concentrated forces 

 ,rE E  defined in (8). The crack faces at    ( θen  ) are traction-free. The distribution of 

the force tractions  )()( , nn
r PP   and the double-force tractions  )()( , n

θ
n

r RR  on the small circle of radius 

0r  (with ren  ) is depicted in Fig. 3. The expressions for tractions are given in Appendix A.  

Further, one may observe in Fig. 3 that the outward unit normal n  is discontinuous at the 

corner points  ,0rA  and  ,0rB . In particular, as we approach the corner point A  ( B ) from the 

crack face, the outward unit normal is en   ( en  ). As we approach A  and B  moving along the 

circle, we have ren  . This discontinuity, according to (8), gives rise to concentrated forces qE  in 

the corners A  and B , respectively. As we shall see, the role of these concentrated forces is to 

balance the resultant force and moment of the distributed force and double-force tractions acting on 

the circle. It should be noted that, in our case, the edge C  (defined in Section 2) is a straight line 
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parallel to the z -axis and passing through the corner points A  ( AC ) and B  ( BC ), respectively. 

Therefore, these concentrated forces are line loads (constant upon z ) acting along the edges AC  and 

BC  .                           

 

                         

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 3  Equilibrium of a small circle surrounding the crack tip. The tractions ( ( ) ( )
,

n n

q q
P R ) are  

distributed along the circle with radius 0r . 

                                      

 

Moreover, from the geometry of the problem, it is evident that  ( ) ( ) ( ), 1,0( )A A A
rn n

  

 n , 

 ( ) 0,1A

n , ( ) ( )A  

 n n , and ( ) ( )A  

n n . Also, the unit tangent vector (in the positive 

direction), along the edges AC  and BC , is defined as  0,0,1s . In view of the above, we may write 

for the vector  k s n , the following geometric relations  ( ) 0 ,1A

k ,  ( ) 1,0A

 k , 

( ) ( )B A 

 k k , and  ( ) ( )B A 

k k . It is noted, that the superscript )(  refers to the surface which is to 

the left of the unit tangent vector s  and )(  to the surface which is to the right (see Fig. 3).  

Employing now the definition in (8), the polar components of these concentrated forces at the 

corner points  ,0rA  and  ,0rB  read 
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    In light of the above, the total resultant forces in the horizontal and vertical direction and 

the total resultant moment with respect to the crack-tip position are written as 
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where  ,H V  represent the resultant horizontal and vertical forces and T  the resultant moment, due 

to the distributed force and double-force tractions  )()( , n
q

n
q RP  along the circumference of the circle. 

Also, rrt  and rt  are the total stresses that correspond to outward unit normal ren   (see Eqs. (A8) 

and (A9) in Appendix A). Further, we note that, in (43c), only the double-force traction θrr
n
θ mR )(  

contributes in the equilibrium of moments, since rrr
n

r mR )(  is a self-equilibrated field (see Fig. 3). 

The equilibrium for the mode I (symmetric) case is examined first. It is noted, that since the 

radius 0r  of the circle is very small, only the most singular asymptotic stress fields derived 

previously will be used to check equilibrium. Furthermore, we can show that 
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    0,, 00    rmrm rr  by invoking the symmetry of the problem and Eqs. (35). 

In view of the above and employing Eqs. (42), we finally obtain 
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One may observe, therefore, that in the mode I case only the radial components of the concentrated 

forces at the corners survive. We also note that these forces are square root singular at the tip of the 

crack. Further, with the aid of (35) and employing the definitions (A8) and (A9) in Appendix A, we 

are able to write the total stresses defined on the boundary of the circle 0rr   as 
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Moreover, since the total stresses exhibit an 3 2r -singularity, we infer that resultant forces H  and 

V  (see (43)) exhibit also a square root singularity. 

Now, in view of the symmetry of the mode I problem, the vertical resultant force V  in (43b) 

and the resultant moment T  in (43c) are identically zero. Thus, we conclude that 0yF   and 

0M  . On the other hand, according to Eqs. (43)-(45), it can readily be shown that the sum of the 

two concentrated horizontal forces  ,0
)( rE A

r  and  ,0
)( rE B

r  balances the resultant horizontal 

force H  due to the distributed force tractions )(n
rP  and )(nP  on the circle. Therefore, 0 xF  in 

(43a) and equilibrium prevails in the horizontal direction, as well. It is noted, that as 00 r , the 
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concentrated forces in (44) become infinitely large, resembling a single concentrated force applied at 

the tip of the crack. However, this force is balanced, as we saw before, by the resultant force H , 

which in this case ( 00 r ) can also be viewed as a single force acting (in the opposite direction) on 

the crack tip.  

The same observations apply for the general notch problem, as well. In particular, in the case 

of symmetric loading, the equilibrium equations (43b) and (43c) are identically satisfied. Also, it can 

be shown that the sum of the two concentrated horizontal forces  ( )
0 ,A

rE r a  and  ( )
0 ,B

rE r a  at the 

corners, will always be balanced by the resultant horizontal force H , due to the distributed force 

tractions )(n
rP  and )(nP  along the circular sector.  

In the mode II (anti-symmetric) case, the horizontal resultant force H  in (43a) is identically 

zero. Further, by virtue of Eqs. (40) and (42), the concentrated forces in the corners A  and B  read 
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The total stresses for 0rr   become 
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In light of the above, it can easily be shown that both the force equilibrium in the vertical sense (42b) 

and the moment equilibrium (42c) are satisfied.  
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 Finally, we mention that a discussion of these edge forces can be found in Green et al. 

(1968).  

 

 

6. The limit case of a half space in plane-strain 

 

The limit case of the half-plane ( 090a  ) is considered next. The characteristic equation, for 

both symmetric and antisymmetric loadings, takes the following form 

 

      npppp  02cos121 24   ,     ,...2,1,0 n  .                         (50) 

 

According to (50), the first admissible eigenvalue is 2p . Hence, the displacement field for the 

symmetric case becomes 

 

   3coscos2cos 2
2

2
131 rArArCCur    ,                                                        (51a) 
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2 2 1 2
sin 2 sin sin sin 3u C r A r A r
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 
  

    
 

  .                           (51b) 

 

In light of the above, we conclude that the monopolar stresses exhibit a variation of the type r~ ,  

whereas the dipolar stresses behave as  1O . As for the total stresses, according to Eqs. (B13)-(B14) 

in Appendix B, the eigenvalue 2p  leads to zero total stresses. To obtain non-zero total stresses, 

one has to take the next successive eigenvalue, i.e. 3p . This eigenvalue provides a field of total 

stresses that behaves as  1O  and also gives higher-order terms for the displacements and strains. 

 

 

7. The notch problem in anti-plane strain 

 

We consider a body with a notch (re-entrant corner) occupying a domain in the  ,r -plane 

under conditions of anti-plane strain (see Fig. 4). The following displacement field is then generated  

 

0 θuur  ,      0 wuz  ,      ),( θrww   .                                                              (52)    
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Fig. 4  The notch problem in anti-plane strain. 

 

 

The non-vanishing components of the monopolar and dipolar stresses are  
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The total stress along the plane  const., r  (with en ) is defined as (see Appendix A) 
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In light of the above, the equation of equilibrium (5), in the case of anti-plane strain, takes the 

following form 

 

024  wwc  .                                                                                                           (56) 

 

We focus attention now on the immediate vicinity of the corner point and consider the notch 

under remotely applied loading. Then, the displacement field takes the following separated variable 

form 

 

  )(,  Wrrw p  ,                                                                                                         (57) 

 

where the exponent p  and the angular function )(W  are to be determined.  

If only the dominant singular terms are retained, the field equation (56) becomes 

 

04  w  .                                                                                                                       (58) 

    

The general solution to the biharmonic equation that exhibits an odd (anti-symmetric) behavior in  , 

is as follows 

 

 1 2sin sin( 2)pw r D p D p     ,                                                                                (59) 

 

where 1D  and 2D  are unknown constants.  

On the other hand, by retaining only the most singular terms, we write the boundary 

conditions in terms of displacements under the form    
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Equations (59) and (60) form an eigenvalue problem. For a non-trivial solution to exist, the 

determinant of the coefficients of ( 21, DD ) should vanish and this gives the result  
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     0)1(2sin32sin)1(21 2  apappp  .                                                         (61) 

 

Further, from the requirement of bounded strain energy in vicinity of the tip of the notch, the 

exponent p  must satisfy the following inequality: 1p . Also, using the same reasoning as in the 

plane-strain case before, we note that the eigenvalue 1p  should be taken into account since it 

leads to bounded strain energy. It is noted, however, that this eigenvalue does not contribute to the 

dipolar stresses (see Eqs. (B20)-(B23) in Appendix B). 

In Fig. 5a, the variation of the exponent ( 1p ) of the monopolar stresses in both classical 

and gradient elasticity (see Eq. (53)) is displayed. We note that, as in the plane-strain case, the 

monopolar stress is not singular in gradient elasticity. In Fig. 5b, the strength of the singularity 

( 3p ) of the total stress zt  in (55) is depicted. It is observed that as the angle of the notch a  is 

reduced from 180  to 90 , the strength of the stress singularity falls monotonically from 5.1  to 

1 . The strongest singularity corresponds to the case of the crack.  

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5a Variation of the monopolar stress with respect to the notch angle a   
in anti-plane shear. 
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Fig. 5b Variation of the exponent of the total stress in gradient elasticity with respect to the notch angle a   
in anti-plane shear. 

 
 

 

Next, the mode III crack is examined as a limit case of a notch with angle 0180a  . It is 

noted, that this problem was first solved successfully, in the context of dipolar gradient elasticity, by 

Georgiadis (2003). The characteristic equation (61) now becomes  

 

    20)2sin(21 2 npppp     ,      ,...2,1,0 n  .                                          (62) 

 

The most singular admissible eigenvalue allowed by the energy criterion is 23p . The latter 

eigenvalue gives the most singular solution and, thus, the dominant behavior of the stress field as 

0r . Then, the corresponding displacement field has the form 

 

a
oooo o o o o oo

 3p
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where E  is the amplitude factor for the lower-order crack-tip field and D  is the amplitude factor for 

the dominant term of order 23 . It is noted, that the linear (in r ) term does not contribute to the 

energy release rate as well as to the crack tip opening displacement (Georgiadis, 2003; Radi, 2008). 

This term only produces a constant strain field at the crack tip (see also Eqs. (B16)-B(17) in 

Appendix B).  

In view of the above, the monopolar and dipolar stresses are written as 
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Finally, we consider the special case of a half space in anti-plane shear ( 090a  ). The 

characteristic equation (61) now becomes  

 

    npppp  0)sin(21 2   ,   ,...2,1,0 n  .                                                  (67) 
 

The first admissible eigenvalue is 2p . In this case, the displacement field is as follows 
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2sin sin(2 )w Er Dr     .                                                                                            (68) 

 

The dipolar stresses are given as 

 

2 cos 2rzm cD    ,  2 sin 2zm cD     , 

2 sin 2rrzm cD   ,  rzθzθr mm   .                                                                              (69a-d) 

 

It is noted, that according to Eq. (B24) in Appendix B, the eigenvalue 2p   results in zero total 

stress zt . To obtain non-zero total stresses, one has to take the next successive eigenvalue, i.e. 

3p . This eigenvalue provides a field of total stresses that behaves as  1O  and also gives higher-

order terms for the displacements and strains. The same asymptotic behavior is exhibited by z  in 

classical elasticity in the case of a half space (see Fig. 5a).  

 

 

8. Discussion and concluding remarks 

 
In this paper, the asymptotic displacement, strain and stress fields near the corner of a sharp 

notch in a body of infinite extent (wedge) are determined by using the theory of dipolar gradient 

elasticity. Form II of Mindlin’s theory was employed to account for effects of microstructure. Plane-

strain and anti-plane shear conditions are considered. The notch faces are taken traction-free and the 

loading is assumed to be remotely applied. The boundary value problem was attacked with the 

asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along 

with the restriction of a bounded strain energy, provides the asymptotic fields.  

The results for the near-corner fields showed significant departure from the predictions of 

classical elasticity. In general, the strain field is always bounded at the tip of the notch. Also, all 

asymptotic fields depend not only upon the notch angle a , but also upon the Poisson’s ratio  . As 

for the stresses, there are several stress measures in gradient elasticity, i.e. the monopolar stresses, 

the dipolar stresses and the total stresses. The monopolar stresses are found to be bounded at the tip 

of the notch, but the other stresses have a singular character. 

More specifically, we notice the following points: 

(i) According to Eqs. (29) and (30), the displacement field is described in terms of a lower- 

order, linear (in r ) term, which produces a constant strain field, and a dominant ( pr ) term which 
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defines the singular behavior of the dipolar and total stresses. The exponent p  varies from 3 2p   

(crack case) to 2p   (half-space case). It is noted that, contrary to the classical elasticity case, the 

linear terms in the displacement field do not vanish for notch angles oo a 18090  . This can be 

justified from the fact that the lower-order linear terms are coupled, through the governing equations 

(16) and the boundary conditions in (19a,b), with higher-order terms (of  3O r ) in the asymptotic 

expansion. Recall that, in classical elasticity, these linear terms appear only in the symmetric loading 

case at angles 180oa   and 90oa   (Stephen and Wang, 1999).  

However, in the mode I and mode II crack problems, these linear terms do not affect the 

crack opening (Eq. (32b)) or sliding (Eq. (37a)) displacements. Indeed, in these cases, the crack-face 

displacements exhibit an 23r  variation (cusp-like closure). It is remarked, that this type of closure 

has also been observed in the experiments by Elssner et al. (1994) and in the results of an analysis 

through discrete dislocations around a crack tip by Cleveringa et al. (2000). Also, more recently, 

Xiao and Karihaloo (2006) using the Knein-Williams asymptotic technique, have shown that the 

crack faces of a pure mode I (frictionless) cohesive crack close in a cusp-like manner. 

(ii) The strain field is always bounded at the tip of the notch. In particular, due to the 

existence of the lower-order linear terms in the displacement field, the strains take a constant (non-

zero) value when 0r   (see also Eqs. (B1)-(B3) in Appendix B). In the case of a crack, they exhibit 

a variation of the form  1 2~ const. r . Thus, the necessary condition for uniqueness of the crack 

problem in form II of Mindlin’s gradient elasticity (Grentzelou and Georgiadis, 2005) is fulfilled by 

the present asymptotic solution. 

(iii) The total stresses at the tip of the notch exhibit a stronger singularity than the one 

predicted by classical elasticity (Fig. 2b). Indeed, in the case of a crack, an aggravation of the stress 

field, as compared to the respective result of the conventional theory, is observed (this aggravation 

appears here through the stronger 23r  singularity). This behavior is in agreement with the analytical 

results of Shi et al. (2000b), Georgiadis (2003), and Gourgiotis and Georgiadis (2009). Such a strong 

singularity was also suggested by the experimental evidence of Prakash et al. (1992) in extremely 

brittle fracture. Notice, however, that despite the singular character of these higher order stresses, the 

J -integral remains bounded (Georgiadis, 2003; Gourgiotis and Georgiadis, 2009). In particular, it 

was shown in Gourgiotis and Georgiadis (2009) that when the microstructure of the material is taken 

into account, the ratio .clasJJ , where .clasJ  is the expression of the J -integral in classical elastic 

fracture mechanics, decreases monotonically with increasing values of ac 21  ( 2a  being the length 
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of the crack). This finding shows that the gradient theory predicts a strengthening effect since a 

reduction of the crack driving force takes place as the material microstructure becomes more 

pronounced.  

 

 

 

Appendix A:  Boundary conditions and equilibrium equations in polar coordinates 

 

In this Appendix, we derive the total stresses and the equilibrium equations in polar 

coordinates, in the case of plane and antiplane strain. 

The boundary condition (6) can be written in direct form as 

 

m)(nnn)(m)(nm)(τnP
ss

(n)    ,                                                          (A1) 

 

where   nn)(I
s

 is the surface gradient operator, I  is the unit dyadic and   is the usual 

gradient operator given as )()()( 1
 rθrr ee  in polar coordinates. Also, we note that the 

base vectors are related through the following differential relations  ee  r , ree   , 0 rre , 

and 0 er . 

The cases of plane and anti-plane strain are examined now separately. 

 

Plane strain 

 

The monopolar and dipolar stress tensors, in the case of plane strain, are written as 

 

rr r r r r r r zz z z                   τ e e e e e e e e e e  ,                                  (A2) 

 

rrr r r r r r r r rr r r r rm m m m                 m e e e e e e e e e e e e  

reeeeeeeeeeee   rrrrrrr mmmm  

reeeeeeeeeeee  zzzzrzzrrzzzrzzrzzzzz mmmm   

 eeeeee  zzzzzzzz mm  .                                                 (A3) 



 37 
 
 

 

Further, when θen  , the surface gradient operator takes the form )()( rr e
s

 . In this case we 

obtain 

 

zzzzrrrrr mmmmm eeeeeeeeeemn   rrr  ,                 (A4) 

rrrrrrrrr m
r

m
r

m
r

m
r

m emn 



  

1111
)(   

 e



  rrrrr m

r
m

r
m

r
m

r
m

1111
,                               (A5) 

 eemn
s

rrrrrr mm  )(  ,                                                                                    (A6) 

0n
s

  .                                                                                                                         (A7) 

 

In view of the above, we are able to write for the total stresses Eqs. (14) and (15) of the main 

text.  

On the other hand, when the boundary is defined by ren  , the pertinent total and dipolar 

stresses along the plane  const.,r   become (see also Eshel and Rosenfeld, 1970; 1975) 
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It should be noted that the total stresses  rrr tt ,  and   tt r ,  which correspond to ren   and θen   

respectively, do not constitute components of a tensor.  

As for the equations of equilibrium in terms of displacements, these are written in direct form 

as 

 

         0211 2  uu c   .                                                                      (A11) 
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It is noted that the equations in brackets are the Navier-Cauchy equations of classical elasticity. 

Now, (A11) can be written in a more convenient form as 

 

     01 2
ee ssc rr                                                                                                     

     0]2[]2[ 222222  
 ee rrrrr srsrscssrsrscs  .    (Α12)  

   

Antiplane strain 

 

The monopolar and dipolar stress tensors in this case are defined as 

 

  eeeeeeee  zzrzzrzzzrrz  ,                                                    (A13) 
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         eeeeeeeeeeee  zzrzzrzrrzrzrrzr mmmm  .        (A14) 

 

Further, when θen  , the following relations hold 

 

θzzrzzrzθzzrzr mmmm eeeeeeeemn    ,                                     (A15) 
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In view of the above, we are able to write for the total stress Eq. (52) of the main text. 

 

 

Appendix B: General expressions for the strain and stress fields 

 

Plane strain 
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By virtue of Eqs. (29), (30) and appropriate definitions in the previous analysis, the strains 

and the monopolar stresses are written as 
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Moreover, the dipolar stresses become 
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Accordingly, the total stresses can be written as 
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Antiplane strain 

 

In this case, the displacement and the strains take the following form  

 

  )2sin(sinθsin 21  pDpDrErw p  ,                                                              (B15) 

 1
1 2sin sin sin( 2)

2 2
p

rz

E p
r D p D p        ,                                                       (B16) 

 1
1 2

1
cos cos ( 2)cos( 2)

2 2
p

z

E
r D p p D p p         .                                         (B17) 

 

Further, by virtue of Eqs. (53)-(55), the general forms of the monopolar, dipolar and total 

stresses are as follows 

              

  )2cos()2(coscos 21
1   ppDppDrE p

z  ,                                       (B18) 

 
  )2sin(sinsin 21

1   ppDppDrE p
rz  ,                                                  (B19) 
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 2
1 2( 1) cos ( 2)cos( 2)p

rzm cr p D p p D p p         ,                                          (B20) 

 

 2
1 2( 1) cos ( 2)cos( 2)p

r zm cr p D p p D p p         ,                                          (B21) 

 

 2
1 2( 1) sin ( 4)sin( 2)p

zm cr p D p p D p p          ,                                         (B22) 

 
 2

1 2( 1) sin sin( 2)p
rrzm cr p p D p D p       .                                                       (B23) 

 ))2cos(()2()(cos)2)(1( 21
3    ppDppDppcrt p

z  ,                          (B24) 
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