
HAL Id: inria-00512442
https://hal.inria.fr/inria-00512442

Submitted on 30 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying Self-configurable Component-based Systems
with FracToy

Alban Tiberghien, Philippe Merle, Lionel Seinturier

To cite this version:
Alban Tiberghien, Philippe Merle, Lionel Seinturier. Specifying Self-configurable Component-based
Systems with FracToy. ASM, Alloy, B and Z, 2010, Feb 2010, Orford, Canada. pp.91-104. �inria-
00512442�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50061509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00512442
https://hal.archives-ouvertes.fr

Specifying Self-configurable Component-based
Systems with FracToy

Alban Tiberghien, Philippe Merle, and Lionel Seinturier

INRIA Lille - Nord Europe
University of Lille 1 - LIFL CNRS UMR 8022

Villeneuve d’Ascq, France

firstname.lastname@inria.fr

Abstract. One of the key research challenges in autonomic computing
is to define rigorous mathematical models for specifying, analyzing, and
verifying high-level self-* policies. This paper presents the FracToy for-
mal methodology to specify self-configurable component-based systems,
and particularly both their component-based architectural description
and their self-configuration policies. This rigorous methodology is based
on the first-order relational logic, and is implemented with the Alloy
formal specification language. The paper presents the different steps
of the FracToy methodology and illustrates them on a self-configurable
component-based example.

Key words: Alloy, Autonomic Computing, Component-based Systems,
Formal Specification, Methodology Self-Configuration

1 Introduction

Autonomic computing gathers systems that can manage themselves given high-
level objectives from administrators [12]. The idea is to design software which
can provide efficient and continuous services to users without any human inter-
vention. Self-configurability is a key property of any autonomous system, and
means the capability of such a system to configure itself according to high-level
policies automatically. For instance, software components [16] and connectors
can be added or removed to/from a running software system according to evo-
lutions of runtime conditions. These dynamic modifications of running software
architectures can be described by high-level self-configuration policies. Here, one
of the key research challenges is to define rigorous mathematical models for spec-
ifying, analyzing, and verifying such autonomous systems. Such a model must
allow to detect errors and inconsistencies of high-level policies early at design
time instead of during execution of targeted autonomous systems.

To tackle this problem, this paper presents the FracToy formal methodol-
ogy to specify, analyse, and verify self-configurable component-based systems.
This rigorous methodology is based on the first-order relational logic, and is

implemented with the Alloy formal specification language [10]. This method-
ology is iterative and divided into two main steps. The first step consists in
specifying the component model used to build applications. This step is itself
divided into three sub-steps. This first sub-step consists in defining the formal
syntax of the component model, both its core concepts and the relations be-
tween these concepts. Secondly, this component model is constrained in order to
define its static semantics, i.e., the set of constraints that any application must
satisfy. Thirdly, it is necessary to specify the dynamic semantics of the com-
ponent model, i.e., the set of operations allowing to update the architecture of
running applications. Here, this dynamic semantics must be defined in a way al-
lowing self-configurability of applications. Then, the second step of the FracToy
methodology is to specify self-configurable component-based applications. Their
components are defined by extending the core concepts of the component model
and their self-configuration policies are defined as first-order logic constraints.
Furthermore, the FracToy methodology allows to highlight and verify properties
like the consistency of both the static semantics and self-configuration policies,
and the commutativity of dynamic operations.

This paper is organized as follows. Section 2 presents the FracToy method-
ology and its different steps. Section 3 illustrates the methodology on a self-
configurable component-based “Room” example. Section 4 discusses related works.
Finally, Section 5 concludes and draws perspectives of FracToy.

2 The FracToy framework

FracToy is a framework that introduces a methodology, based on the Alloy [9],
for the formal description of self-configurable component-based systems.

2.1 Alloy in a nutshell

The Alloy formal specification language fits with the fist-order relational logic [10].
The manipulated concepts are sets (Alloy signatures) that can be brought to-
gether using relations (Alloy signature fields). Alloy models are described with
these two concepts and are constrained using facts or predicates. A fact is an
expression that the whole model must always satisfy. A predicate is a parametriz-
able constraint which is applied only when invoked. As facts, predicates can be
applied on the whole systems but also just on a specific signature. Furthermore,
the language provides a model analyser. The Alloy Analyser can be used as a
model finder (invoked with the Alloy run command) that instantiate all the mod-
els that satisfy the Alloy specification. It can also be used as a counter-example
finder (invoked with the Alloy check command) in order to counter-example
models that don’t satisfy assertion (defined with the Alloy asset keyword).
The combined use of the model finder and of counter-example finder allows fast
iterative debugging, during the design process.

2.2 The FracToy methodology

The FracToy methodology proposes a use of Alloy for specifying, verifying and
analysing self-configurable component-based systems. This rigorous and itera-
tive methodology is divided into the two following steps and illustrated by the
Figure 1:

1. Specification of the component model composed of three sub-steps.
(a) The formal syntax: This step consists in defining each core concept

of the component model and the relations between these concepts. Each
concept is an Alloy abstract signature. Alloy signature fields define how
and what concepts can be bound to a given concept. At this step, the
model is not constrained but basic restrictions are nervertheless specified
using the one, lone and set keywords in order to define the cardinality
of the relations.

(b) The formal static semantics: The static semantics of the component
model is the set of constraints restricting the model. These constraints
can be facts establishing what is possible to model with the component
model. They can also be predicates in order to define finer-grain con-
straints that just concern certain concepts.
Consistency checking: Once the static semantics is specified, it is
possible to run a consistency test in order to verify that the constrained
component model is instantiable. If tests don’t pass, a correction/refine-
ment loop can be performed on this step or on the previous step.

(c) The formal dynamic semantics: Operations that dynamically up-
date the running system must be specified in a way to preserve the
self-configurable nature of the architecture. It is important to clearly
identify the different states that the systems can reach. By fixing the
pre-conditions and post-conditions, these operations define what is pre-
served during the changes of state of the system.
Properties checking: These checks ensure that the dynamic of the
system is well specified. For example, they ensure that add/remove op-
erations are commutative. Indeed, all operations of the system have its
inverse operations and the couple of operations must be commutative
in order to have the certainty that it is possible to roll back in a stable
state after applying an operation on the system.

2. Specification of the self-configurable system: Each component of the
self-configurable architecture is a signature extending a concept of the com-
ponent model. In the context of component-based architecture specification,
the declaration part of the signature is dedicated to the declaration of ser-
vices, references and/or sub-components. The Alloy one, lone and set key-
words are used to specify the cardinality of these relations. The constraint
part of the signature is dedicated to the definition of the assembly. In this
part, constraints are used to map the previously declared fields to the con-
cepts of the component model. Additional constraints can be added in order
to limit the use of components in the case of the component model is not
enough restrictive.

Self-configuration policies definition: Self-configuration policies are di-
rectly defined in the constraint part of the component signature. Indeed, in
our approach, self-configuration is managed by components themselves.
Consistency/Properties checking: Here, it is possible to check the con-
sistency on the full specified architecture and to verify that the self-configuration
policies are efficiently applied and conform to the requirement.

Fig. 1. The FracToy methodology

3 FracToy in action

Following the methodology presented in Section 2, this section provides the spec-
ification of a self-configurable component-based system, the “Room” use case,
presented in Section 3.1. First, the component model is specified in Section 3.2
and, then, the “Room” self-configurable architecture is specified in Section 3.3.
Verification and analysis are performed in Section 3.4.

3.1 The “Room” scenario

The scenario describes the case where a mobile user enters a room and wants to
keep in touch with news and services provided by the room. The user’s mobile
device can receive news from the room and once s/he has obtained the expected
information, s/he can visualise them on a screen or print them, according to the
features available on her/his mobile device.

More precisely, there is a news provider that broadcasts news in the room.
The room provides two kinds of output devices: screen and printer. The room
is aware of the presence of all mobile devices. When a new mobile device (e.g.
PDA, smartphones, etc.) enters the room, it is automatically connected to the
news provider and to the screen and/or the printer devices according to the type
of output devices it supports. For example, a PDA can print and display whereas
a smartphone can only print because of power and energy restrictions. Finally,
several mobile devices can be in the same room at the same time.

A component-based architecture description The Room scenario can be
reified as a self-configurable component-based systems. The room and all devices
are components. Each component has a variable number of input and output
ports (communication points) respectively called services and references. The
NewsProvider component has no service and its number of references (of type
News) is not statically defined and can evolve according to the number of Mo-
bileDevice components contained in the Room component. Each MobileDevice
component has one News-typed service and the number of references and their
types (either DisplayableNews or PrintableNews) are specific to each type of mo-
bileDevice. According to the informal definition, the PDA component has a ref-
erence of type DisplayableNews and a reference of type PrintableNews whereas
the Smartphone component has only a reference of type PrintableNews. Self-
configuration is performed when a MobileDevice component is added to the
Room component. In this case, all bindings are automatically established be-
tween the MobileDevice components and other components.

3.2 Specification of the component model

Informal specification Our use case is not based on an existing component
model, the presented component model remains consistent with the Szyperski
component definition given in [16] in the way that “a component is a unit of
composition with contractually specified interfaces and context dependencies
only”. The elementary entity of our model is Component. As this component
model is hierarchical, a component can be either Composite, i.e. a component
that can contain sub-components, or Primitive, i.e. a component implemented in
a programming language. Port represents typed communication access points to
a component. A port is either a Service (providing functionality) or a Reference
(requiring functionality). Finally, it is possible to bind a reference to a service
in order to explain communication channels between components. As our work
takes place in a context of dynamic environments, this component model has to
deal with this concern. That is why it is important to notice that when we use
the term “component” or “port” it must be understood “a state of a component”
or “a state of a port”. Indeed an instance of a component models a certain state
of the component. Each state is identified by an Id. Components have a cid
and ports have a pid. If two different component instances have the same id,
that means that we are semantically dealing with the same component but in
different states.

Figure 2 represents the UML-like diagram of the key-concepts of the compo-
nent model and their relations.

Fig. 2. UML-like diagram of the component model

The formal syntax We first declare the signature named Component (line 2).
The fields services (line 4) and references (line 5) allow to respectively put in
relation a component to its set of Services and References. Each component
has a field cid (line 3) which represents the identity of the component (line 0).
Two signatures specialize (“extends” in Alloy) the concept of component. The
Primitive signature (line 7) just allows to directly manipulate this concept and to
have a type for this kind of component. It is the same principle for the Composite
signature (line 10) whereas it is possible, with this set, to associate (line 11) a
component to other components (semantically its sub-components).

0 sig Id {}
1

2 abstract sig Component {
3 cid : one Id,
4 services : set Service ,
5 references : set Reference
6 }

7 abstract sig Primitive extends Component{}
8

9

10 abstract sig Composite extends Component{
11 subComponents : set Component
12 }

In this component model, the Port signature (line 14) is a typed (line 16)
communication access point of a component. In the same way as component,
ports have an identity pid (line 15). Service (line 18) and Reference signatures
(line 20) correspond to the functionality that a component provides and requires,
respectively. The boundTo field (line 21) allows to bind a reference to a service.
A reference can be bound to zero or one service and as a consequence a reference
can exist even if it is not bound (specified with the Alloy lone keyword).

12 abstract sig Type {}
13

14 abstract sig Port {
15 pid : one Id,
16 type : one Type
17 }

18 sig Service extends Port {}
19

20 sig Reference extends Port {
21 boundTo : lone Service
22 }

The formal static semantics In addition of the formal syntax, the static
semantics of the component model is defined as a set of constraints in order

to avoid certain use cases. The fact AllPortsAffectedToOneComponent (line 22)
forces that all ports of a system are owned by one and only one component i.e.
can be shared by two distinct component instances only if they have the same
identity. The fact AllBindingsInTheSameComposite (line 29) ensures that all
references of a sub-component are bound to a service of a sub-component of the
same composite. The fact NoBindingBetweenUncompatibleTypes (line 36) just
forbids that a binding is established if the types of the reference and the service
are not the same. The fact CompositeNotContainItself (line 39 avoids that a
composite contains itself in its sub-components. The bind predicate (line 42)
declares a binding between a reference and a service. This statement chooses a
reference in the set of references and binds it to the service (line 43).

22 fact AllPortsAffectedToOneComponent {
23 all p : Port {
24 all c, c’ : Component {
25 (p in c .(services+references) and p in c ’.(services+references)) implies c.cid = c’.cid
26 }
27 }
28 }
29 fact AllBindingsInTheSameComposite{
30 all c : Composite {
31 all ref : c.subComponents.references {
32 ref .boundTo in c.subComponents.services
33 }
34 }
35 }
36 fact NoBindingBetweenUncompatibleTypes {
37 all r : Reference, s : Service | r .type != s.type implies r.boundTo != s
38 }
39 fact CompositeNotContainItself {
40 all c : Composite | c not in c.subComponents
41 }
42 pred Composite.bind[references : set Reference, service : one Service] {
43 one ref : references {
44 ref .boundTo = service
45 }
46 }

A test of consistency can be performed on the formal specification of this
component model. This test consists in asking to the analyser to instanciate a
model in an arbitrary (but coherent) scope. Here, ComponentModelConsistency
test can be run, i.e, the analyser is able to instanciate a model that satisfy all
the defined constraints. In other words, this core of concepts is consistent and
can be a sure basis for more complicated architectures.
ComponentModelConsistency : run {} for 20

The formal dynamic semantics The last part of the specification of the
component model is its dynamic semantics. In the context of our example, the
dynamic semantics of the addition and the removal of a component in a compos-
ite has been formally specified. The two predicates addComponent (line 46) and
removeComponent (line 53) are semantically commutative and are built follow-
ing the same logic. In order to modelize the dynamicity of an addition (removal
resp.), a predicate formalizes the change of state due to the operation execution.
The two first parameters of these predicates, c1 and sc1, symbolize the state of

the system before the operation execution, and the two last parameters c2 and
sc2, symbolize the state of the system after the operation execution. A semantics
for these actions is to formalize that the resulting state of a component addition
(removal resp.) is the start state plus (minus resp.) the component to add (re-
move resp.) and there is nothing more nothing less element in the architecture.
This semantics is too strong in our case of self-configurable component-based
system. Indeed, according to our Room example, when a MobileDevice compo-
nent is added in the Room composite, the self-configuration policies are applied
and as a consequence bindings are created between components and, thus, there
is more that the new MobileDevice component in the Room composite. That
is why it is important to notice that these operations don’t ensure the strict
equality of the system state (modulo the addition/removal of the component)
but are based on the notion of state equivalence. Indeed both operations ensure
the preservation of at least all that were present in the initial state of the system
but it is not forbidden that the final state contains more elements.

Based on this logic, the addComponent predicate constrains the component
sc1 not to be in the sub-components of the component c1 (line 47). The final
composite c2 is constrained to be equivalent to the initial composite c1 (line 48)
and the final component sc2 to be equivalent to the initial added component
sc2 (line 49). Finally, the component sc2 must be in the sub-components of
the composite c2 (line 50). It is exactly the opposite for the removeComponent
predicate.

46 pred addComponent[c1 : Composite, sc1 : Component, c2 : Composite, sc2 : Component] {
47 sc1 not in c1.subComponents
48 compositeEquiv[c1, c2]
49 componentEquiv[sc1, sc2]
50 sc2 in c2.subComponents
51 }
52

53 pred removeComponent[c1 : Composite, sc1 : Component, c2 : Composite, sc2 : Component] {
54 sc1 in c1.subComponents
55 compositeEquiv[c2, c1]
56 componentEquiv[sc2, sc1]
57 sc2 not in c2.subComponents
58 }

The relation of equivalence used for the formalization of the addition and
the removal of a component in a composite is specified through the three follow-
ing predicates. Two components are equivalent (line 58) if they have the same
identity (line 59) and if their services and references are equivalent (lines 60 and
61). Two port sets are equivalent (line 63) if all ports of the first set (line 64)
have an equivalent port in the second set (line 65). Two ports are equivalent is
they have the same identity (line 66) and the same type (line 67). Finally, two
composites are equivalent (line 71) if they are equivalent components (line 72)
and if all sub-components of the first composite have its equivalent in the second
composite (lines 73-75). This formalization allows to support self-configuration
policies as shown in Section 3.3.

58 pred componentEquiv(c1 : Component, c2 : Component) {
59 c1.cid = c2.cid
60 portEquiv[c1.references , c2. references]
61 portEquiv[c1.services , c2. services]

62 }
63 pred portEquiv(portSet1 : set Port, portSet2 : set Port) {
64 all p1 : portSet1 {
65 one p2 : portSet2 {
66 p1.pid = p2.pid
67 p1.type = p2.type
68 }
69 }
70 }
71 pred compositeEquiv(c1 : Composite , c2 : Composite){
72 componentEquiv[c1, c2]
73 all sc1 : c1.subComponents {
74 one sc2 : c2.subComponents {
75 componentEquiv[sc1,sc2]
76 }
77 }
78 }

An important property can be checked thanks to the Alloy analyser on the dy-
namic addition and removal of a component in a composite. Semantically the
addComponent and removeComponent are two commutable operations. The Ad-
dRemoveCommutable assertion checks that adding a component in a composite
then removing it keep the system in the same state. In other words, this assertion
tests that the two predicates are commutable.
assert AddRemoveCommutable {

all c1, c2 : Composite, sc1, sc2 : Component {
addComponent[c1, sc1, c2, sc2] implies removeComponent[c2, sc2, c1, sc1]
}
}
check AddRemoveCommutable for 10 expect 0

3.3 Specification of the self-configurable Room system

In a general way, the “Room” example is specified by extending the component
model. Three singleton types,i.e. , News, DisplayableNews, and PrintableNews,
are first defined. They respectively correspond to the type of each service and
reference port (singletons are obtained thanks to the Alloy one keyword).

83 one sig News, DisplayableNews, PrintableNews extends Type {}

Specification of the primitive components NewsProviders is a primitive
component (line 83). It provides no service (line 86) but requires a set of refer-
ences named r (line 84). All these references are of type News (line 87) and it
can not require other references than r (line 88).

83 sig NewsProvider extends Primitive {
84 r : set Reference
85 } {
86 no services
87 r .type = News
88 references = r
89 }

Printer and Screen are two other primitive components (lines 89 and 97
resp.). Both require no reference (lines 92 and 100 resp.) but they provide a
service named s (lines 90 and 98 resp.). This service is of type PrintableNews for

the Printer primitive (line 93) and of type DisplayableNews for the Screen one
(line 93). They can not provide other services than s (lines 94 and 102 resp.).

MobileDevice is an abstract primitive component (line 96) for modeling any
mobile device.

89 sig Printer extends Primitive {
90 s : one Service
91 } {
92 no references
93 s .type = PrintableNews
94 services = s
95 }
96 abstract sig MobileDevice extends Primitive {}

97 sig Screen extends Primitive {
98 s : one Service
99 } {

100 no references
101 s .type = DisplayableNews
102 services = s
103 }

Specification of the Room composite After having defined the different
primitive components of the architecture, the Room composite can be specified
(line 103). As this composite is autonomous, it doesn’t declare neither services
(line 109) nor references (line 110). It contains at least three primitives declare as
a relation between the Room and the primitive sets (lines 104-106). Here the re-
lation name represents the name of the sub-component. The Alloy one keyword
means that there can be only one NewsProvider, one Printer, and one Screen.
The mobileDevices field declares a pool of MobileDevice. Indeed, as the Room
composite is open to different incoming/outcoming mobile devices, we have mod-
elised this by the use of a set of MobileDevice (line 107). The constrain in line 111
specifies that these components are effectively declared as sub-component of the
composite and that it can not have other kind of components in a Room.

In our methodology, the self-configuration policies are expressed as a con-
traint. These policies are declared in the signature of the composite that man-
ages the self-configuration. Thus, the self-configuration policy of this use case
specifies that, for all mobile devices contained in a room (line 114), all services
of this mobile device (line 115) and of type News is bound from one reference of
the NewProvider component (line 116). Regarding the mobile device references,
there are two cases. If the reference is of type DisplayableNews, this reference is
bound to the service provided by the Screen component (line 119). If the refer-
ence is of type PrintableableNews, this reference is bound to the service provided
by the Printer component (line 120).

103 sig Room extends Composite {
104 newsProvider : one NewsProvider,
105 printer : one Printer,
106 screen : one Screen,
107 mobileDevices : set MobileDevice
108 } {
109 no services
110 no references
111 subComponents = newsProvider + printer + screen + mobileDevices
112

113 //SELF−CONFIGURATION POLICY
114 all md : mobileDevices {
115 all serv : md.@services {
116 serv.type = News implies bind[newsProvider.r, serv]
117 }
118 all ref : md.@references {
119 ref .type = DisplayableNews implies bind[ref, screen.s]

120 else ref .type = PrintableNews implies bind[ref, printer.s]
121 }
122 }
123 }

The specification of specific mobile devices PDA and SmartPhone are
both MobileDevice components. Both provide only one service s of type News
(lines 124, 128, 131 and lines 135, 138, 141). The difference is done by the
reference that these mobile devices require. Both require one reference of type
PrintableNews (lines 125, 129 and lines 136, 139) but, in addition, the PDA
requires one reference of type DisplayableNews (lines 126, 130).

123 sig PDA extends MobileDevice {
124 s : one Service,
125 r1 : one Reference,
126 r2 : one Reference
127 } {
128 s .type = News
129 r1.type = PrintableNews
130 r2.type = DisplayableNews
131 services = s
132 references = r1 + r2

133 }
134 sig SmartPhone extends MobileDevice {
135 s : one Service,
136 r : one Reference
137 } {
138 s .type = News
139 r .type = PrintableNews
140 services = s
141 references = r
142 }

The whole self-configuration specification is completed and a more realistic
test of consistency can be performed. The SelfConfigurableArchitectureConsis-
tency tries to instantiate a model conform to the “Room” use case when a PDA
is present in the room.
SelfConfigurableArchitectureConsistency: run {

one myRoom : Room, pda : PDA | pda in myRoom.mobileDevices
}
for exactly 1 Composite, exactly 4 Primitive, exactly 6 Port, exactly 3 Type, exactly 11 Id

3.4 Analysis of the Room architecture

Static properties checking The AllReferencesAreBound assertion (line 1)
specifies that a mobile device contained in a room (line 3) implies that all its
references are bound to a service provided either by a printer or a screen (line 4).
This assertion is verified on all the instantiable model in a large scope (line 7).
The analyser doesn’t find any counter-example and that is why it assures that
when a mobile device is added to the room all the expected bindings are well
established. This assertion shows that the self-configuration policy specification
produces the expected result.

1 assert AllReferencesAreBound {
2 all room : Room, md : MobileDevice {
3 room.component[md]
4 implies all ref : md.references | ref .boundToin room.(printer+screen).services
5 }
6 }
7 check AllReferencesAreBound for 10 expect 0

Dynamic properties checking A more interesting use of the Alloy Analyser
is to find non-explicit dynamic properties. The following assertion specifies that
a MobileDevice primitive dynamically added in a Room composite implies that
this primitive is also in the mobileDevices set of the Room composite. The anal-
yser doesn’t find any counter-example and it proves that an explicit constraint
on the component model implies an implicit constraint on the self-configurable
architecture. Indeed the addComponent predicate formalizes the adding of a com-
ponent in a composite by preserving the state of the composite. The following
satisfied assertion proves that if this predicate is applied on a Room composite
and a MobileDevice primitive it implicitly implies that the MobileDevice prim-
itive is also contained in the mobileDevices set of the Room composite. Even if
this fact result from the conjunction of all constraints of the whole system, we
want to highlight the fact that this constraint has never been expressed and that
is a consequence of other constraints.

1 assert AddComponentImpliesMobileDeviceInRoom {
2 all room1, room2 : Room, md1, md2 : MobileDevice {
3 addComponent[room1, md1, room2, md2]
4 implies md2 in room2.mobileDevices
5 }
6 }
7 check AddComponentImpliesMobileDeviceInRoom for 10 expect 0

4 Related Work

In [3], Bradbury et al. highlight that formal methods are used to provide for-
mal specification languages for designing dynamic software architectures. Works
presented in [1], [5] and [6] are also based on logic-based formalisms but they
aim at providing formal specification languages where our work provides rig-
orous and formal methodology to specify, verify and analyse self-configurable
component-based systems on top of the use of a formal specification language.

In the domain of CBSE, Architectural Description Language (ADL) have
been proposed in order to describe the configuration and the assembling of
component-based systems [14]. Generally, the semantics of the underlying com-
ponent model and of the description language are not clear and are hard-coded
in their compiler/interpreter. Nevertheless, two works aim to describe dynamic
architectures. The Plastik framework [8] provides a unique formalism (extend-
ing Acme/Armani ADL) to specify dynamic architecture (implemented with the
OpenCOM component model [4]). Armani (now full part of Acme) allows to
set invariants on architectures and some additional statements allows to imper-
atively describe the architectural reconfigurations Wright [2] is an ADL based
on formal method, i.e., the Communicating Sequential Processes (CSP) process
algebra and allows to formalize the dynamic behaviour of architectural connec-
tions. FracToy approach explicitly focuses on the description of component-based
systems and allows to describe and reason on the architectural evolution of the
system. The use of Alloy provides an unified, declarative, and constraint-based
way of description.

Among Alloy community, Alloy has been already used in CBSE. In [7],
Darwin ADL has been formalized with Alloy. This work presents a formalization
of the Darwin component model and specifies an architecture built on to top of
this model. In this work, constraints are only to express static invariants on the
architecture. In [13], a way to formally express and verify properties of Acme
architectural styles. Acme styles are mapped to Alloy in order to use the Alloy
Analyser to check consistency and properties on these styles. In this work, the
dynamic nature of software is not considered. Other works focus on the way to
modelize existing component models using Alloy. It is the case for COM in [11]
and Fractal in [15]. These works aim to formally specify component models
that are originally specified in natural language. Thereby, they can highlight
properties on the model that are ambiguous in the textual specification. The
FracToy approach is not dedicated to a specific component model and allows,
in addition, to specify, verify, and analyse both the component model and the
self-configurable architecture built on top of these component model.

5 Conclusion and future work

In this paper, we have presented FracToy, a rigorous and formal methodology for
specifying, verifying and analysing self-configurable component-based systems.
This methodology is divided into two main steps: specify the component model
and specify the self-configurable architecture.

The FracToy methodology was applied to design the Room self-configurable
component-based system, both the underlying component model and the self-
configurable component-based system. This example has shown how to efficiently
use the Alloy analyser in order to exhibit static/dynamic and not necessary ex-
plicit properties on the architecture. The Alloy formal specification language
proves that it fits to the specification of such systems. Indeed the underlying
theory of Alloy, i.e., the set theory, is closed to the component-based program-
ming and its analyser allows fast analysis, debugging, and visualizing. Moreover,
this approach provides a unique paradigm for specifying, verifying and analysing
systems. In addition, the first-order relational logic approach allows to design
self-configurable systems in a declarative and constraint-based way without con-
sidering syntactic and technical concerns. Thus, specifications describe what the
system should be, not how the system should do it. The system is described ac-
cording to the different states that it can reach instead of describing the sequence
of operations to execute to reach a certain state.

Nevertheless, the FracToy approach is limited by a built-in limitation of Alloy.
Indeed, as other model finder, all Alloy model instantiations has to be performed
in a defined scope. As a consequence, highlighted properties are fully true only in
this scope. Moreover, by writing the Room use case in Alloy, we have identified
some recurring syntactic patterns and that specification auto-generation can be
expected. That is why, on the short term, we plan to add syntactic sugar on top
of the FracToy description to fill this gap.

References

1. Nazareno Aguirre and Tom Maibaum. A Temporal Logic Approach to the Speci-
fication of Reconfigurable Component-Based Systems. In ASE ’02: Proceedings of
the 17th IEEE International Conference on Automated Software Engineering, page
271, Washington, DC, USA, 2002. IEEE Computer Society.

2. Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University, May 1997.

3. Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger.
A Survey of Self-Management in Dynamic Software Architecture Specifications.
In WOSS ’04: Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed
Systems, pages 28–33, New York, NY, USA, 2004. ACM.

4. Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin
Lee, Jo Ueyama, and Thirunavukkarasu Sivaharan. A Generic Component Model
for Building Systems Software. ACM Transactions on Computer Systems, 26:1–42,
2008.

5. V. C. C. de Paula. ZCL: A Formal Framework for Specifying Dynamic Software
Architectures. PhD thesis, Federal University of Pernambuco, 1999.

6. M. Endler and J. Wei. Programming generic dynamic reconfigurations for dis-
tributed applications. In Proceedings of the International Workshop on Config-
urable Distributed Systems, pages 68–79. IEE, 1992.

7. Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-Organising Software Archi-
tectures for Distributed Systems. In WOSS ’02: Proceedings of the first workshop
on Self-healing systems, pages 33–38, New York, NY, USA, 2002. ACM.

8. Antônio Tadeu A. Gomes, Thais V. Batista, Ackbar Joolia, and Geoff Coulson.
Architecting Dynamic Reconfiguration in Dependable Systems. Architecting De-
pendable Systems IV, 4615/2007:237–261, 2007.

9. Daniel Jackson. Alloy: a Lightweight Object Modelling Notation. ACM Transac-
tions on Software Engineering and Methodology, 11(2):256–290, 2002.

10. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
April 2006.

11. Daniel Jackson and Kevin Sullivan. COM Revisited: Tool-Assisted Modelling of an
Architectural Framework. SIGSOFT’00/FSE-8: Proceedings of the 8th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
149–158, 2000.

12. Jeffrey O Kephart and David M Chess. The Vision of Autonomic Computing.
Computer, 36:41–50, 2003.

13. Jung Soo Kim and David Garlan. Analyzing Architectural Styles with Alloy. In
ROSATEA ’06: Proceedings of the ISSTA 2006 Workshop on Role of Software
Architecture for Testing and Analysis, pages 70–80, New York, NY, USA, 2006.
ACM.

14. Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Transactions on
Software Engineering, 26:70–93, 1997.

15. Philippe Merle and Jean-Bernard Stefani. A formal specification of the Fractal
component model in Alloy. Technical Report RR-6721, INRIA, November 2008.

16. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Number 0-201-74572-0. 2002.

