534 research outputs found

    The scientific case for magnetic field satellites

    Get PDF
    To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described

    Report of the panel on geopotential fields: Magnetic field, section 9

    Get PDF
    The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions

    From Denoising Diffusions to Denoising Markov Models

    Full text link
    Denoising diffusions are state-of-the-art generative models which exhibit remarkable empirical performance and come with theoretical guarantees. The core idea of these models is to progressively transform the empirical data distribution into a simple Gaussian distribution by adding noise using a diffusion. We obtain new samples whose distribution is close to the data distribution by simulating a "denoising" diffusion approximating the time reversal of this "noising" diffusion. This denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities, known as scores, obtained using score matching. Such models can be easily extended to perform approximate posterior simulation in high-dimensional scenarios where one can only sample from the prior and simulate synthetic observations from the likelihood. These methods have been primarily developed for data on Rd\mathbb{R}^d while extensions to more general spaces have been developed on a case-by-case basis. We propose here a general framework which not only unifies and generalizes this approach to a wide class of spaces but also leads to an original extension of score matching. We illustrate the resulting class of denoising Markov models on various applications

    Deception Detection Using Machine Learning

    Get PDF
    Today’s digital society creates an environment potentially conducive to the exchange of deceptive information. The dissemination of misleading information can have severe consequences on society. This research investigates the possibility of using shared characteristics among reviews, news articles, and emails to detect deception in text-based communication using machine learning techniques. The experiment discussed in this paper examines the use of Bag of Words and Part of Speech tag features to detect deception on the aforementioned types of communication using Neural Networks, Support Vector Machine, Naïve Bayesian, Random Forest, Logistic Regression, and Decision Tree. The contribution of this paper is two-fold. First, it provides initial insight into the identification of text communication cues useful in detecting deception across different types of text-based communication. Second, it provides a foundation for future research involving the application of machine learning algorithms to detect deception on different types of text communication

    Feasibility of Using a Commercial Fitness Tracker as an Adjunct to Family-Based Weight Management Treatment: Pilot Randomized Trial.

    Get PDF
    BACKGROUND: Fitness trackers can engage users through automated self-monitoring of physical activity. Studies evaluating the utility of fitness trackers are limited among adolescents, who are often difficult to engage in weight management treatment and are heavy technology users. OBJECTIVE: We conducted a pilot randomized trial to describe the impact of providing adolescents and caregivers with fitness trackers as an adjunct to treatment in a tertiary care weight management clinic on adolescent fitness tracker satisfaction, fitness tracker utilization patterns, and physical activity levels. METHODS: Adolescents were randomized to 1 of 2 groups (adolescent or dyad) at their initial weight management clinic visit. Adolescents received a fitness tracker and counseling around activity data in addition to standard treatment. A caregiver of adolescents in the dyad group also received a fitness tracker. Satisfaction with the fitness tracker, fitness tracker utilization patterns, and physical activity patterns were evaluated over 3 months. RESULTS: A total of 88 adolescents were enrolled, with 69% (61/88) being female, 36% (32/88) black, 23% (20/88) Hispanic, and 63% (55/88) with severe obesity. Most adolescents reported that the fitness tracker was helping them meet their healthy lifestyle goals (69%) and be more motivated to achieve a healthy weight (66%). Despite this, 68% discontinued use of the fitness tracker by the end of the study. There were no significant differences between the adolescent and the dyad group in outcomes, but adolescents in the dyad group were 12.2 times more likely to discontinue using their fitness tracker if their caregiver also discontinued use of their fitness tracker (95% CI 2.4-61.6). Compared with adolescents who discontinued use of the fitness tracker during the study, adolescents who continued to use the fitness tracker recorded a higher number of daily steps in months 2 and 3 of the study (mean 5760 vs 4148 in month 2, P=.005, and mean 5942 vs 3487 in month 3, P=.002). CONCLUSIONS: Despite high levels of satisfaction with the fitness trackers, fitness tracker discontinuation rates were high, especially among adolescents whose caregivers also discontinued use of their fitness tracker. More studies are needed to determine how to sustain the use of fitness trackers among adolescents with obesity and engage caregivers in adolescent weight management interventions

    Concurrent codes:a holographic-type encoding robust against noise and loss

    Get PDF
    Concurrent coding is an encoding scheme with 'holographic' type properties that are shown here to be robust against a significant amount of noise and signal loss. This single encoding scheme is able to correct for random errors and burst errors simultaneously, but does not rely on cyclic codes. A simple and practical scheme has been tested that displays perfect decoding when the signal to noise ratio is of order -18dB. The same scheme also displays perfect reconstruction when a contiguous block of 40% of the transmission is missing. In addition this scheme is 50% more efficient in terms of transmitted power requirements than equivalent cyclic codes. A simple model is presented that describes the process of decoding and can determine the computational load that would be expected, as well as describing the critical levels of noise and missing data at which false messages begin to be generated

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Proceedings of a Conference on Agricultural Education in Our Public Schools

    Get PDF
    Vocational Agriculture has played an important role in helping young men become established in farming. Much of our success in more than meeting the food and fiber needs of our rapidly growing population today can b~ attributed to Vocational Agriculture. But, questions are being raised about the need for cominuation of such an extensive program of preparation for farming in view of the reduced number of farming opportunities each year. Furthermore, questions are being raised about the adeqwacy of preparation for farming by a program that is terminal at the high school level, and about the adequacy of preparation for college if a student devotes much of his high school time to Vocational Agriculture.https://lib.dr.iastate.edu/card_reports/1000/thumbnail.jp

    Ancient phylogenetic divergence of the enigmatic African rodent Zenkerella and the origin of anomalurid gliding

    Get PDF
    © 2016 Heritage et al. The "scaly-tailed squirrels" of the rodent family Anomaluridae have a long evolutionary history in Africa, and are now represented by two gliding genera (Anomalurus and Idiurus) and a rare and obscure genus (Zenkerella) that has never been observed alive by mammalogists. Zenkerella shows no anatomical adaptations for gliding, but has traditionally been grouped with the glider Idiurus on the basis of craniodental similarities, implying that either the Zenkerella lineage lost its gliding adaptations, or that Anomalurus and Idiurus evolved theirs independently. Here we present the first nuclear and mitochondrial DNA sequences of Zenkerella, based on recently recovered whole-body specimens from Bioko Island (Equatorial Guinea), which show unambiguously that Zenkerella is the sister taxon of Anomalurus and Idiurus. These data indicate that gliding likely evolved only once within Anomaluridae, and that there were no subsequent evolutionary reversals. We combine this new molecular evidence with morphological data from living and extinct anomaluromorph rodents and estimate that the lineage leading to Zenkerella has been evolving independently in Africa since the early Eocene, approximately 49 million years ago. Recently discovered fossils further attest to the antiquity of the lineage leading to Zenkerella, which can now be recognized as a classic example of a "living fossil," about which we know remarkably little. The osteological markers of gliding are estimated to have evolved along the stem lineage of the Anomalurus-Idiurus clade by the early Oligocene, potentially indicating that this adaptation evolved in response to climatic perturbations at the Eocene-Oligocene boundary (~34 million years ago)
    corecore