11 research outputs found

    Validating Large Language Models with ReLM

    Full text link
    Although large language models (LLMs) have been touted for their ability to generate natural-sounding text, there are growing concerns around possible negative effects of LLMs such as data memorization, bias, and inappropriate language. Unfortunately, the complexity and generation capacities of LLMs make validating (and correcting) such concerns difficult. In this work, we introduce ReLM, a system for validating and querying LLMs using standard regular expressions. ReLM formalizes and enables a broad range of language model evaluations, reducing complex evaluation rules to simple regular expression queries. Our results exploring queries surrounding memorization, gender bias, toxicity, and language understanding show that ReLM achieves up to 15x higher system efficiency, 2.5x data efficiency, and increased statistical and prompt-tuning coverage compared to state-of-the-art ad-hoc queries. ReLM offers a competitive and general baseline for the increasingly important problem of LLM validation

    Modelling high-resolution ALMA observations of strongly lensed dusty star-forming galaxies detected by Herschel

    Get PDF
    We present modelling of ∼0.1 arcsec resolution Atacama Large Millimetre/submillimetre Array imaging of seven strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Four of these systems are galaxy–galaxy strong lenses, with the remaining three being group-scale lenses. Through careful modelling of visibilities, we infer the mass profiles of the lensing galaxies and by determining the magnification factors, we investigate the intrinsic properties and morphologies of the lensed submillimetre sources. We find that these submillimetre sources all have ratios of star formation rate to dust mass that are consistent with, or in excess of, the mean ratio for high-redshift submillimetre galaxies and low redshift ultra-luminous infrared galaxies. Reconstructions of the background sources reveal that the majority of our sample display disturbed morphologies. The majority of our lens models have mass density slopes close to isothermal, but some systems show significant differences

    ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    Get PDF
    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ∼1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro–Frenk–White profile. We show that we would need a sample of ∼500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys

    Practical scrubbing: Getting to the bad sector at the right time

    No full text
    Abstract—Latent sector errors (LSEs) are a common hard disk failure mode, where disk sectors become inaccessible while the rest of the disk remains unaffected. To protect against LSEs, commercial storage systems use scrubbers: background processes verifying disk data. The efficiency of different scrub-bing algorithms in detecting LSEs has been studied in depth; however, no attempts have been made to evaluate or mitigate the impact of scrubbing on application performance. We provide the first known evaluation of the performance impact of different scrubbing policies in implementation, in-cluding guidelines on implementing a scrubber. To lessen this impact, we present an approach giving conclusive answers to the questions: when should scrubbing requests be issued, and at what size, to minimize impact and maximize scrubbing throughput for a given workload. Our approach achieves six times more throughput, and up to three orders of magnitude less slowdown than the default Linux I/O scheduler. Keywords-scrubbing; hard disk failures; latent sector errors; idleness predictors; background scheduling I

    Temperature Management in Data Centers: Why Some (Might) Like It Hot

    No full text
    The energy consumed by data centers is starting to make up a significant fraction of the world’s energy consumption and carbon emissions. A large fraction of the consumed energy is spent on data center cooling, which has motivated a large body of work on temperature management in data centers. Interestingly, a key aspect of temperature management has not been well understood: controlling the setpoint temperature at which to run a data center’s cooling system. Most data centers set their thermostat based on (conservative) suggestions by manufacturers, as there is limited understanding of how higher temperatures will affect the system. At the same time, studies suggest that increasing the temperature setpoint by just one degree could save 2–5 % of the energy consumption. This paper provides a multi-faceted study of temperature management in data centers. We use a large collection of field data from different production environments to study the impact of temperature on hardware reliability, including the reliability of the storage subsystem, the memory subsystem and server reliability as a whole. We also use an experimental testbed based on a thermal chamber and a large array of benchmarks to study two other potential issues with higher data center temperatures: the effect on server performance and power. Based on our findings, we make recommendations for temperature management in data centers, that create the potential for saving energy, while limiting negative effects on system reliability and performance

    Modelling high-resolution ALMA observations of strongly lensed dusty star-forming galaxies detected by Herschel

    Get PDF
    We present modelling of ∼0.1 arcsec resolution Atacama Large Millimetre/submillimetre Array imaging of seven strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Four of these systems are galaxy–galaxy strong lenses, with the remaining three being group-scale lenses. Through careful modelling of visibilities, we infer the mass profiles of the lensing galaxies and by determining the magnification factors, we investigate the intrinsic properties and morphologies of the lensed submillimetre sources. We find that these submillimetre sources all have ratios of star formation rate to dust mass that are consistent with, or in excess of, the mean ratio for high-redshift submillimetre galaxies and low redshift ultra-luminous infrared galaxies. Reconstructions of the background sources reveal that the majority of our sample display disturbed morphologies. The majority of our lens models have mass density slopes close to isothermal, but some systems show significant differences

    Modelling high-resolution ALMA observations of strongly lensed dusty star-forming galaxies detected by Herschel

    No full text
    We present modelling of similar to 0.1 arcsec resolution Atacama Large Millimetre/submillimetre Array imaging of seven strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Four of these systems are galaxy-galaxy strong lenses, with the remaining three being group-scale lenses. Through careful modelling of visibilities, we infer the mass profiles of the lensing galaxies and by determining the magnification factors, we investigate the intrinsic properties and morphologies of the lensed submillimetre sources. We find that these submillimetre sources all have ratios of star formation rate to dust mass that are consistent with, or in excess of, the mean ratio for high-redshift submillimetre galaxies and low redshift ultra-luminous infrared galaxies. Reconstructions of the background sources reveal that the majority of our sample display disturbed morphologies. The majority of our lens models have mass density slopes close to isothermal, but some systems show significant differences
    corecore