8 research outputs found

    Opening a New Horizon for the Facile Synthesis of Long-Life Ni-Rich Layered Cathode

    No full text
    The compositional partitioning of the Li[NixCoyMn1–x–y]O2 layered cathodes, wherein the unstable but capacity-maximizing Ni-enriched compartment is encapsulated by a chemically protective Mn-rich shell, has been proven to improve the cycling performance of Ni-rich cathodes. However, the input of excessive thermal energy during the cathode calcination process can eliminate the advantageous features of the concentration gradient (CG) design. Accordingly, it is crucial to determine the optimal calcination conditions, e.g., temperature, and duration, and to precisely control these parameters. Herein, we propose a strategy that can effectively ameliorate the deterioration of cathodes resulting from excessive thermal energy input and remarkably improve their cycling performance. It was revealed that a trace amount of tungsten incorporation during the cathode calcination can effectively mitigate the high-temperature-induced cathode degeneration and maintain outstanding product quality over a wide range of temperatures. Thus, the proposed strategy opens new avenues for the facile synthesis of long-life Ni-rich CG cathodes

    Slit-Robo expression in the leech nervous system: insights into eyespot evolution

    No full text
    Abstract Background Slit and Robo are evolutionarily conserved ligand and receptor proteins, respectively, but the number of slit and robo gene paralogs varies across recent bilaterian genomes. Previous studies indicate that this ligand-receptor complex is involved in axon guidance. Given the lack of data regarding Slit/Robo in the Lophotrochozoa compared to Ecdysozoa and Deuterostomia, the present study aims to identify and characterize the expression of Slit/Robo orthologs in leech development. Results We identified one slit (Hau-slit), and two robo genes (Hau-robo1 and Hau-robo2), and characterized their expression spatiotemporally during the development of the glossiphoniid leech Helobdella austinensis. Throughout segmentation and organogenesis, Hau-slit and Hau-robo1 are broadly expressed in complex and roughly complementary patterns in the ventral and dorsal midline, nerve ganglia, foregut, visceral mesoderm and/or endoderm of the crop, rectum and reproductive organs. Before yolk exhaustion, Hau-robo1 is also expressed where the pigmented eye spots will later develop, and Hau-slit is expressed in the area between these future eye spots. In contrast, Hau-robo2 expression is extremely limited, appearing first in the developing pigmented eye spots, and later in the three additional pairs of cryptic eye spots in head region that never develop pigment. Comparing the expression of robo orthologs between H. austinensis and another glossiphoniid leech, Alboglossiphonia lata allows to that robo1 and robo2 operate combinatorially to differentially specify pigmented and cryptic eyespots within the glossiphoniid leeches. Conclusions Our results support a conserved role in neurogenesis, midline formation and eye spot development for Slit/Robo in the Lophotrochozoa, and provide relevant data for evo-devo studies related to nervous system evolution

    Analysis of the distribution of assimilation products and the characteristics of transcriptomes in rice by submergence during the ripening stage

    No full text
    Abstract Background Research on the submergence stress of rice has concentrated on the quiescence strategy to survive in long-term flooding conditions based on Submergence-1A (SUB1A). In the case of the ripening period, it is important that submergence stress can affect the quality as well as the survival of rice. Therefore, it is essential to understand the changes in the distribution of assimilation products in grain and ripening characteristics in submergence stress conditions. However, such studies have been insufficient at the physiological and molecular biological levels. Results We confirmed that the distribution rate of assimilation products in grain was decreased by submergence treatment. These results were caused by an increase in the distribution rate of assimilation products to the stem according to escape strategy. To understand this phenomenon at the molecular level, we analyzed the relative expression levels of genes related to sucrose metabolism, and found that the sucrose phosphate synthase gene (OsSPS), which induces the accumulation of sucrose in tissues, was decreased in the seeds and leaves, but not in the stems. Furthermore, the sucrose transporter gene (OsSUT) related to sucrose transport decreased in the seeds and leaves, but increased in stems. We also analyzed the biological metabolic processes related to starch and sucrose synthesis, carbon fixation, and glycolysis using the KEGG mapper with selected differentially expressed genes (DEGs) in seeds, stems, and leaves caused by submergence treatment. We found that the expression of genes for each step related to starch and D-glucose synthesis was down-regulated in the seeds and leaves but up-regulated in the stem. Conclusion The results of this study provide basic data for the development of varieties and corresponding technologies adapted to submergence conditions, through understanding the action network of the elements that change in the submergence condition, as well as information regarding useful DEGs
    corecore