565 research outputs found

    Plasmon channels in the electronic relaxation of diamond under high-order harmonics femtosecond irradiation

    Get PDF
    We used high order harmonics of a femtosecond titanium-doped sapphire system (pulse duration 25 fs) to realise Ultraviolet Photoelectron Spectroscopy (UPS) measurements on diamond. The UPS spectra were measured for harmonics in the range 13 to 27. We also made ab initio calculations of the electronic lifetime of conduction electrons in the energy range produced in the UPS experiment. Such calculations show that the lifetime suddenly diminishes when the conduction electron energy reaches the plasmon energy, whereas the UPS spectra show evidence in this range of a strong relaxation mechanism with an increased production of low energy secondary electrons. We propose that in this case the electronic relaxation proceeds in two steps : excitation of a plasmon by the high energy electron, the latter decaying into individual electron-hole pairs, as in the case of metals. This process is observed for the first time in an insulator and, on account of its high efficiency, should be introduced in the models of laser breakdown under high intensity

    Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture

    Get PDF
    Summary Young mice over-expressing Runx2 fail to gain bone relative to wild type mice with growth and present spontaneous fractures. It allows, for the first time in rodents, direct assessment of anti-fracture efficacy of strontium ranelate which was able to decrease caudal vertebrae fracture incidence through an improvement of trabecular and cortical architecture. Introduction The aim was to investigate whether strontium ranelate was able to decrease fracture incidence in mice over-expressing Runx2, model of severe developmental osteopenia associated with spontaneous vertebral fractures. Methods Transgenic mice and their wild type littermates were treated by oral route with strontium ranelate or vehicle for 9 weeks. Caudal fracture incidence was assessed by repeated X-rays, resistance to compressive loading by biochemical tests, and bone microarchitecture by histomorphometry. Results Transgenic mice receiving strontium ranelate had significantly fewer new fractures occurring during the 9 weeks of the study (−60%, p < 0.05). In lumbar vertebrae, strontium ranelate improves resistance to compressive loading (higher ultimate force to failure, +120%, p < 0.05) and trabecular microarchitecture (higher bone volume and trabecular number, lower trabecular separation, +60%, +50%, −39%, p < 0.05) as well as cortical thickness (+17%, p < 0.05). In tibiae, marrow cavity cross-section area and equivalent diameter were lower (−39%, −21%, p < 0.05). The strontium level in plasma and bone was in the same range as the values measured in treated postmenopausal women. Conclusions This model allows, for the first time, direct assessment of anti-fracture efficacy of strontium ranelate treatment in rodents. In these transgenic mice, strontium ranelate was able to decrease caudal vertebral fracture incidence through an improvement of trabecular and cortical architecture

    Poor sleep quality may independently predict suicidal risk in COVID-19 survivors: a 2-year longitudinal study

    Get PDF
    Objective: Multiple symptoms of psychiatric, neurological, and physical illnesses may be part of Post-COVID conditions and may pose COVID-19 survivors a high suicidal risk. Accordingly, we aimed to study factors contributing to suicidal risk in Post COVID-19 patients. Method: Consecutive patients with post COVID-19 conditions were followed for 2 years at the University Hospital of Ferrara at baseline (T0), 6 (T1), 12 (T2), and 24 (T3) months. Demographics, and clinical data for all patients included: disease severity, hospital length of stay, comorbidity, clinical complications, sleep quality, cognitive complaints, anxiety and stress-related symptoms, depressive symptoms, and suicidal ideation. Results: The final sample included 81 patients with post COVID survivors. The mean age was 64 + 10,6 years, 35,8% were females, 65,4% had medical comorbidities, and 69,1% had WHO severe form of COVID forms. At T0 more than 90% of patients showed poor sleep quality, 59.3% reported moderate/severe depressive symptoms, and 51.% experienced anxiety, 25.9% experienced post-traumatic stress symptoms. At T0 suicidal ideation, interested 6.1% and at T3 it increased to 7.4%. In the regression analysis, suicidal ideation at baseline was best predicted by poor sleep quality (O.R. 1.71, p=0.044) and, after 2 years, suicidal ideation was best predicted by poor sleep quality experienced at baseline (OR 67.3, p=0.001). Conclusions: Poor sleep quality may play as an independent predictor of suicidal risk in post-COVID survivors. Evaluating and targeting sleep disturbances in COVID survivors is important to prevent the consequences of disrupted sleep in mental health

    Effects of Risedronate in Runx2 Overexpressing Mice, an Animal Model for Evaluation of Treatment Effects on Bone Quality and Fractures

    Get PDF
    Young mice overexpressing Runx2 specifically in cells of the osteoblastic lineage failed to gain bone mass and exhibited a dramatic increase in bone resorption, leading to severe osteopenia and spontaneous vertebral fractures. The objective of the current study was to determine whether treatment with a bisphosphonate (risedronate, Ris), which reduces fractures in postmenopausal as well as in juvenile osteoporosis, was able to improve bone quality and reduce vertebral fractures in mice overexpressing Runx2. Four-week-old female Runx2 mice received Ris at 2 and 10 μg/kg subcutaneously twice a week for 12 weeks. Runx2 and wild-type mice received vehicle (Veh) as control. We measured the number of new fractures by X-ray and bone mineral density (BMD) by DEXA. We evaluated bone quality by histomorphometry, micro-CT, and Fourier transform infrared imaging (FTIRI). Ris at 20 μg/kg weekly significantly reduced the average number of new vertebral fractures compared to controls. This was accompanied by significantly increased BMD, increased trabecular bone volume, and reduced bone remodeling (seen in indices of bone resorption and formation) in the vertebrae and femoral metaphysis compared to Runx2 Veh. At the femur, Ris also increased cortical thickness. Changes in collagen cross-linking seen on FTIRI confirmed that Runx2 mice have accelerated bone turnover and showed that Ris affects the collagen cross-link ratio at both forming and resorbing sites. In conclusion, young mice overexpressing Runx2 have high bone turnover-induced osteopenia and spontaneous fractures. Ris at 20 μg/kg weekly induced an increase in bone mass, changes in bone microarchitecture, and decreased vertebral fractures

    Magnetic properties of submicron Co islands and their use as artificial pinning centers

    Full text link
    We report on the magnetic properties of elongated submicron magnetic islands and their influence on a superconducting film. The magnetic properties were studied by magnetization hysteresis loop measurements and scanning-force microscopy. In the as-grown state, the islands have a magnetic structure consisting of two antiparallel domains. This stable domain configuration has been directly visualized as a 2x2-checkerboard pattern by magnetic-force microscopy. In the remanent state, after magnetic saturation along the easy axis, all islands have a single-domain structure with the magnetic moment oriented along the magnetizing field direction. Periodic lattices of these Co islands act as efficient artificial pinning arrays for the flux lines in a superconducting Pb film deposited on top of the Co islands. The influence of the magnetic state of the dots on their pinning efficiency is investigated in these films, before and after the Co dots are magnetized.Comment: 6 pages including figure

    Photoconductivity and Photoemission of Diamond Under Femtosecond Vuv Irradiation

    Get PDF
    In order to gain some insight on the electronic relaxation mechanisms occuring in diamond under high intensity laser excitation and/or VUV excitation, we studied experimentally the pulsed conductivity induced by femtosecond VUV pulses, as well as the energy spectra of the photoelectrons released by the same irradiation. The source of irradiation consists in highly coherent VUV pulses obtained through high order harmonic generation of a high intensity femtosecond pulse at a 1.55 eV photon energy (titanium-doped sapphire laser). Harmonics H9 to H17 have been used for photoconductivity (PC) and harmonics H13 to H27 for photoemission experiments (PES). As the photon energy is increased, it is expected that the high energy photoelectrons will generate secondary e-h pairs, thus increasing the excitation density and consequently the PC signal. This is not what we observe : the PC signal first increases for H9 to H13, but then saturates and even decreases. Production of low energy secondary e-h pairs should also be observed in the PES spectrum. In fact we observe very few low energy electrons in the PES spectrum obtained with H13 and H15, despite the sufficient energy of the generated free carriers. At the other end (H21 and above), a very intense low energy secondary electron peak is observed. As a help to interprete such data, we realized the first ab initio calculations of the electronic lifetime of quasiparticles, in the GW approximation in a number of dielectrics including diamond. We find that the results are quite close to a simple "Fermi-liquid" estimation using the electronic density of diamond. We propose that a quite efficient mechanism could be the excitation of plasmons by high energy electrons, followed by the relaxation of plasmons into individual e-h pairs

    Desynchronization of Diurnal Rhythms in Bipolar Disorder and Borderline Personality Disorder

    Get PDF
    It has long been proposed that diurnal rhythms are disturbed in bipolar disorder (BD). Such changes are obvious in episodes of mania or depression. However, detailed study of patients between episodes has been rare and comparison with other psychiatric disorders rarer still. Our hypothesis was that evidence for desynchronization of diurnal rhythms would be evident in BD and that we could test the specificity of any effect by studying borderline personality disorder (BPD). Individuals with BD (n = 36), BPD (n = 22) and healthy volunteers (HC, n = 25) wore a portable heart rate and actigraphy device and used a smart-phone to record self-assessed mood scores 10 times per day for 1 week. Average diurnal patterns of heart rate (HR), activity and sleep were compared within and across groups. Desynchronization in the phase of diurnal rhythms of HR compared with activity were found in BPD (+3 h) and BD (+1 h), but not in HC. A clear diurnal pattern for positive mood was found in all subject groups. The coherence between negative and irritable mood and HR showed a four-cycle per day component in BD and BPD, which was not present in HC. The findings highlight marked de-synchronisation of measured diurnal function in both BD but particularly BPD and suggest an increased association with negative and irritable mood at ultradian frequencies. These findings enhance our understanding of the underlying physiological changes associated with BPD and BD, and suggest objective markers for monitoring and potential treatment targets. Improved mood stabilisation is a translational objective for management of both patient groups

    VaRank: a simple and powerful tool for ranking genetic variants:

    Get PDF
    Background. Most genetic disorders are caused by single nucleotide variations (SNVs) or small insertion/deletions (indels). High throughput sequencing has broadened the catalogue of human variation, including common polymorphisms, rare variations or disease causing mutations. However, identifying one variation among hundreds or thousands of others is still a complex task for biologists, geneticists and clinicians. Results. We have developed VaRank, a command-line tool for the ranking of genetic variants detected by high-throughput sequencing. VaRank scores and prioritizes variants annotated either by Alamut Batch or SnpEff. A barcode allows users to quickly view the presence/absence of variants (with homozygote/heterozygote status) in analyzed samples. VaRank supports the commonly used VCF input format for variants analysis thus allowing it to be easily integrated into NGS bioinformatics analysis pipelines. VaRank has been successfully applied to disease-gene identification as well as to molecular diagnostics setup for several hundred patients. Conclusions. VaRank is implemented in Tcl/Tk, a scripting language which is platform-independent but has been tested only on Unix environment. The source code is available under the GNU GPL, and together with sample data and detailed documentation can be downloaded from http://www.lbgi.fr/VaRank/

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages
    • …
    corecore