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ABSTRACT
Background. Most genetic disorders are caused by single nucleotide variations
(SNVs) or small insertion/deletions (indels). High throughput sequencing has
broadened the catalogue of human variation, including common polymorphisms,
rare variations or disease causing mutations. However, identifying one variation
among hundreds or thousands of others is still a complex task for biologists, geneti-
cists and clinicians.
Results. We have developed VaRank, a command-line tool for the ranking of genetic
variants detected by high-throughput sequencing. VaRank scores and prioritizes
variants annotated either by Alamut Batch or SnpEff. A barcode allows users to
quickly view the presence/absence of variants (with homozygote/heterozygote status)
in analyzed samples. VaRank supports the commonly used VCF input format for
variants analysis thus allowing it to be easily integrated into NGS bioinformatics
analysis pipelines. VaRank has been successfully applied to disease-gene identifica-
tion as well as to molecular diagnostics setup for several hundred patients.
Conclusions. VaRank is implemented in Tcl/Tk, a scripting language which is
platform-independent but has been tested only on Unix environment. The source
code is available under the GNU GPL, and together with sample data and detailed
documentation can be downloaded from http://www.lbgi.fr/VaRank/.

Subjects Bioinformatics, Genetics, Genomics
Keywords Next generation sequencing, Variant ranking, Human genetics, Molecular diagnostic,
Mutation detection, Annotation, Software, Barcode

INTRODUCTION
In recent years, high throughput sequencing has generated thousands of new genomes

from various species across the tree of life and millions of genetic variants. Especially

in the field of human genetics, targeted or whole exome and genome sequencing are

becoming standard assays (Ng et al., 2010; Ng et al., 2009; Saunders et al., 2012) to identify

causal single-nucleotide variations (SNVs) as well as short insertions/deletions (indels)
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Figure 1 High throughput sequencing data analysis workflow and VaRank positioning.

in patients with Mendelian diseases, or variants associated to increased disease risk (Cirulli

& Goldstein, 2010; Manolio et al., 2009).

The classical data workflow in next generation sequencing includes several bioinfor-

matics steps from the raw sequencing data analysis which transforms the signal from

the sequencers (e.g., fluorescence, pH. . . ) to raw sequences that are further aligned

to the reference genome. Sequence differences from the reference genome (variants)

are then detected aiming at identifying causal mutation (Fig. 1). Although sequencing

limitations are overcome with increasing instrument capacity (Glenn, 2011 and http://

www.molecularecologist.com/next-gen-fieldguide-2014/), the development of bioinfor-

matics solutions for variant prioritization remains a great challenge. The focus on high

throughput sequencing resulted in the development of a variety of tools, protocols and ap-

plications including variant filtering and ranking (for a review see Bao et al., 2014). Recent

approaches include the use of additional data such as haploinsufficiency prediction and

phenotype information (Sifrim et al., 2013), cross species phenotype information (Robin-

son et al., 2014) or interaction data (Smedley et al., 2014) to enhance the analysis. However,

molecular biologists still require simple tools in the variant filtering and ranking process to

identify causal mutations among a large pool of rare variants existing in each individual.

Here we propose a new simple and powerful tool named VaRank (http://www.lbgi.

fr/VaRank) for human variant ranking which provides a comprehensive workflow for

annotating and ranking SNVs and indels. Four modules create the strength of this

workflow (Fig. 2): (i) Data integration with variant call quality summary, to filter out

false positive calls, depending on the sequencing technology and the analysis pipeline; (ii)

Variant annotation to integrate genetic and predictive information (functional impact,

putative effects in protein coding regions, population frequency, phenotypic features. . . )

from different sources, using HGVS nomenclature (Taschner & den Dunnen, 2011);

(iii) Presence/absence of variants (with homozygote/heterozygote status) within all

samples represented in a barcode, to search for recurrence between families or group of

individuals and (iv) Prioritization, to score and rank variants according to their predicted

pathogenic status.

VaRank can substantially reduce the number of potential causal variants to be manually

inspected for further studies and increase the efficiency of sequence analysis for researchers

and clinicians. VaRank has been already successfully applied in the field of human genetics,

first in research including identification of new genes responsible for rare human disease

and second in diagnostics to identify mutation in known human disease implicated genes.

Geoffroy et al. (2015), PeerJ, DOI 10.7717/peerj.796 2/20

https://peerj.com
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://www.lbgi.fr/VaRank
http://dx.doi.org/10.7717/peerj.796


Figure 2 VaRank’s workflow. The work flow is separated into 4 major steps, (i) Sequencing data
from a single or from multiple VCF files are integrated including variant call quality summary, (ii)
Annotation of each variant including genetic and predictive information (functional impact, putative
effects in protein coding regions, population frequency, phenotypic features. . . ) from different sources.
The annotation can either be done by Alamut Batch or SnpEff. (iii) Presence/absence of variants (with
homozygote/heterozygote status) within all samples represented in a barcode, and (iv) Prioritization, to
score and rank variants according to their predicted pathogenic status. The final output files are available
for each samples.

In this work we describe VaRank as a tool and how it is implemented but also present how

it was used in several real datasets.

IMPLEMENTATION
VaRank is written in Tcl/Tk and runs on all Unix platforms with a standard Tcl/Tk 8.5

installation and one of the compatible annotation engines (Alamut Batch, a commercial

software developed by Interactive Biosoftware, Rouen, France, or SnpEff (Cingolani et al.,

2012)). PolyPhen-2 (Adzhubei et al., 2010) can also be installed locally and results can be

automatically integrated into VaRank.

Input and output
To run VaRank, the user specifies the input files and chosen options with a single

command. In case of wrong commands, VaRank will print a description of the options

and defaults settings.
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VaRank reads SNV and indel variant descriptions from a VCF file (variant call format

Danecek et al., 2011), the reference format for genomic variants. The VCF file can be gzip

compressed. The program can take any combination of a single VCF file with multiple

patients and/or multiple VCF files with single patient’s data as input (Fig. 2).

Each variant is checked for consistency (genotype, depth of coverage, variant call

especially for indels) and VaRank prints warnings if appropriate (i.e., patients redundancy

based on the sample identifiers in the VCFs), information from each analysis step

(including status and running time), as well as statistics on the submitted data such as

total number of variants and number of patients.

The output from VaRank is presented in an easily-accessible tab-separated file that can

be opened in any spreadsheet program. Output files report one variant per line. Never-

theless, two types of rankings are provided: one presenting each variant independently,

ordered from most likely pathogenic to least likely pathogenic (files with “byVar” suffix),

and another ranking genes from most likely causative to least likely causative (files with

“byGene” suffix). For the latter, each gene is scored along two criteria: (i) based on its

homozygous most pathogenic variant, or (ii) based on its first two heterozygous most

pathogenic variants. In order to make sure that no variants are overlooked by the user (by

only displaying the most pathogenic variants) all other gene variants are also reported.

The “byVar” file is more appropriate for analyzing patient’s data under the dominant

or pseudominant hypothesis, while the “byGene” file is more appropriate for recessive

diseases (especially for compound heterozygous cases).

Each of these output files is also available in two versions: one contains all submitted

variants (“AllVariants” files) while the other one is prefiltered (“filteredVariants” files). The

default filters remove variants: (i) called with a read depth <= 10, (ii) with a supporting

read count <= 10, (iii) with a ratio of supporting reads <= 15%, (iv) with a validated

status annotation in the dbSNP (Sherry et al., 2001) database (based on at least two

supporting evidences) that are not pathogenic (based on the ClinicalSignificance field),

and (v) with an allele frequency >1% (extracted from the dbSNP database or the Exome

Variant Server). All these parameters can be modified by the user.

Finally, a short report of counts (homozygous, heterozygous and total counts) for each

of the variant categories (5′ and 3′ UTR, upstream, downstream, frameshift, in-frame,

nonsense, splice site, start loss, stop loss, missense, synonymous, intronic, not annotated)

is generated for each sample and for the whole submitted dataset.

Variant annotation
The annotation of variants is performed by the annotation engine (Fig. 2). It is composed

of several parts including the main annotation software, which can be either Alamut

Batch or SnpEff, the barcode annotation (see Fig. 3 and corresponding section) and

optionally PolyPhen-2 predictions. As an example, Alamut Batch collects among others

(Table 2): the gene symbol, the OMIM ID, the transcript ID (i.e., RefSeq), the protein

IDs (RefSeq and UniProt), the HGVS nomenclature (genomic, cDNA and proteic),

information from public variation databases such as dbSNP and the Exome Variant Server
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Figure 3 Barcode. (A) The barcode represents the SNV’s zygosity status in an ordered list of samples.
Samples that are homozygous for the reference allele are represented using “0,” heterozygous variants
are represented using “1” and homozygous variants are represented with “2.” (B) Selected annotations
from the VaRank output representing 3 variants from a single patient. The barcode gives an overview
of the presence/absence of one variant in all other patients analyzed. The family barcode gives a user
ordered view of the presence/absence of one variant in a selection of patients. Together with this, the
total counts of alleles are given in the last 4 columns. (C) Example of pedigrees and barcodes that can be
specifically used in family analyses such as trio exome sequencing. On the left, homozygous mutations
in a consanguineous family could be highlighted by the “121” barcode indicating homozygous variants
(“2”) in the proband inherited from heterozygous parents (“1”). On the right de novo variants in the
proband could be highlighted with the proposed barcode “010.”

(EVS, http://evs.gs.washington.edu/EVS/) and predicted effects at both nucleotide

and protein levels. When available, known mutations are highlighted by extracting

either reported SNVs/indels flagged as “probably-pathogenic”/“pathogenic” in the

field “Clinical significance” introduced since dbSNP134 or using the HGMD database

(Stenson et al., 2014).

The choice of transcript is a critical task that can lead to misannotation (McCarthy et

al., 2014). To avoid underestimating variant effects, they are annotated on all transcripts

available (i.e., one variant can be either intronic or exonic depending on the isoform) and

the most pathogenic effect is retained. Given that VaRank is compatible with 2 annotation

software there are small differences. Using Alamut Batch, each variant is scored for each

transcript. By default we report the longest transcript for each gene except if any variation

is more pathogenic in another transcript. In the case of SnpEff, the annotations are already

sorted from the most to the least pathogenic.

In order to further enrich the annotation for each variant and each gene, VaRank can

integrate (using the option -extann) external annotations provided by the user as a tab

separated file. One could for instance associate private expression data or transmission

mode for each gene of interest.

Annotating and analyzing several individuals together can be very computationally

effective since most of the variants are common polymorphisms. As an example, looking

at 180 patients sequenced for 217 genes, a total of 204,625 variations could be identified

where only 9,378 were non redundant. In this case, the separate annotation of each

patient’s variant set would have required ∼20× times the computational cost of the

combined analysis. Although the total number of non-redundant variants does not
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Figure 4 Distribution of variants in 180 patients for 217 genes. The gray line represents the distribution
of the number of variants identified in each sample in a cohort of 180 patients sequenced for 217 genes.
The dark line represents the cumulative number of non-redundant (NR) variants in the same dataset due
to each new sample added.

plateau, each new sample adds only a very limited number of new variants to the analysis

(Fig. 4).

Variant ranking
The observed variants (SNVs/indels) can be characterized at different levels (DNA, RNA

and protein levels) that VaRank aims at summarizing into a single score. This score is

then used to rank variants based on their predicted pathogenicity and thus accelerates

identification of relevant ones by biologists. The aim of this score is not to provide yet

another score to assess the pathogenicity of each variant but a rationale to present the most

relevant variants according to the biologist common use and interpretation rules. Thus,

the relative weights of each score components were determined experimentally to best

separate categories. VaRank uses the variation type (i.e., substitution, deletion, insertion,

duplication) and the coding effect to score. The VaRank scoring is categorized from the

most likely to the less likely pathogenic state as follows (score in parenthesis): known

mutation (110), nonsense (100), frameshift (100), start loss (80), stop loss (80), missense

(50), in-frame (40) and synonymous coding (10) (Table 1).

In addition when using Alamut Batch, each variant is assessed for any potential effect on

the nearest splice site. Following the guidelines from Houdayer et al. (2012) and our own

tests (data not shown), we selected three assessment programs: MaxEntScan (Yeo & Burge,

2004), NNSplice (Reese et al., 1997) and Splice Site Finder (based on Shapiro & Senapathy,

1987). A variant is considered to affect splicing when at least two out of the three programs

indicate a significant score change between the wild type and the mutated sequences

(respectively −10%, −5% and −15%). A VaRank score is then attributed depending on the

following three splice site categories (score into parenthesis): (i) essential splice site: two
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Table 1 Scoring scheme description. Scores in bold reflect score values after the adjustment score is applied.

Variant category Option name VaRank score Definitions

Known mutation S Known 110 Known mutation as annotated by HGMD and/or dbSNP (rsClinical-
Significance = “pathogenic/probable-pathogenic”).

Nonsense S Nonsensea 100, 105 A single-base substitution in DNA resulting in a STOP codon
(TGA, TAA or TAG).

Frameshift S Fs 100 Exonic insertion/deletion of a non-multiple of 3bp resulting often in a
premature stop in the reading frame of the gene.

Essential splice site S EssentialSplicea 90, 95 Variation in one of the canonical splice sites resulting in a significant
effect on splicing.

Start loss S StartLossa 80, 85 Variation leading to the loss of the initiation codon (Met).

Stop loss S StopLossa 80, 85 Variation leading to the loss of the STOP codon.

Intron-exon boundary S CloseSplicea 70, 75 Variation outside of the canonical splice sites (donor site is −3 to +6,
acceptor site −12 to +2).

Missense S Missensea,b 50, 55, 60, 65 A single-base substitution in DNA not resulting in a change in the
amino acid.

Indel in-frame S Inframe 40 Exonic insertion/deletion of a multiple of 3bp.

Deep intron-exon boundary S DeepSplicea 25, 30 Intronic variation resulting in a significant effect on splicing.

Synonymous coding S Synonymousa 10, 15 A single-base substitution in DNA not resulting in a change in the
amino acid.

Notes.
a Each variant score is adjusted (+5) if high conservation at the genomic level is observed (phastCons cutoff >0.95).
b Missense scores are adjusted (+5) for each deleterious prediction (SIFT and/or PPH2).

first intronic bases up- or downstream the exon (90), (ii) intron-exon boundary: donor

site from −3 to +6, acceptor site from −12 to +2 (70) and (iii) deep intronic changes (25).

It should be noted that a SNV affecting the first or last base of an exon can either have a

coding effect as a missense or an effect on splicing. VaRank reports the most pathogenic of

these two possible effects.

If appropriate the variant score is further adjusted using additional information

as nucleotide-level conservation (phastCons Siepel et al., 2005) and protein-level

pathogenicity predictions (SIFT and PolyPhen-2) (Adzhubei et al., 2010; Kumar, Henikoff

& Ng, 2009) that are used to compute an adjustment score (0 or +5) to be added to the

relevant category (Table 1).

Barcode
Comparing variations of several individuals, related and/or unrelated, affected or not,

has proven to be a very effective strategy for distinguishing polymorphisms from variants

causing or increasing the likelihood of disease (Ng et al., 2010; Ng et al., 2009). In order

to take advantage of this, VaRank introduces a barcode that allows a quick overview of

the presence/absence status of each variant within all samples and their zygosity status

(“0” representing homozygous wild type, “1” heterozygous and “2” homozygous for the

variant) (Fig. 3A). In Fig. 3B, three variants are reported for one specific patient out of

a cohort of 32 samples analyzed together. For example, the third variation c.601G>A

in TTC21B is heterozygous for this patient. In light of the presented barcode, one can
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Table 2 Summary description of the annotations provided by VaRank using Alamut Batch.

Column name Annotation

VariantID Variant identifier [#chr] [genomicposition] [RefBase] [VarBase]

Gene Gene symbol

omimId OMIM® id

TranscriptID RefSeq transcript id

TranscriptLength Length of transcript (full cDNA length)

Chr Chromosome of variant

Start Start position of variant

End End position of variant

Ref Nucleotide sequence in the reference genome (restricted to 50bp)

Mut Alternate nucleotide sequence (restricted to 50bp)

Uniprot Uniprot

protein Protein id (NCBI)

posAA Amino acid position

wtAA 1 Reference codon

varAA 1 Alternate codon

Phred QUAL QUAL: The Phred scaled probability that a REF/ALT polymorphism exists at this site given sequencing
data. Because the Phred scale is −10 * log(1 − p), a value of 10 indicates a 1 in 10 chance of error, while
a 100 indicates a 1 in 10̂ 10 chance. These values can grow very large when a large amount of NGS data
is used for variant calling.

HomHet Homozygote or heterozygote status

TotalReadDepth Total number of reads covering the position

VarReadDepth Number of reads supporting the variant

%Reads variation Percent of reads supporting variant over those supporting reference sequence/base

VarType Variant Type (substitution, deletion, insertion, duplication, delins)

CodingEffect Variant Coding effect (synonymous, missense, nonsense, in-frame, frameshift, start loss, stop loss)

VarLocation Variant location (upstream, 5’UTR, exon, intron, 3’UTR, downstream)

Exon Exon (nearest exon if intronic variant)

Intron Intron

gNomen Genomic-level nomenclature

cNomen cDNA-level nomenclature

pNomen Protein-level nomenclature

rsID dbSNP variation

rsValidation dbSNP validated status

rsClinicalSignificance dbSNP variation clinical significance

rsAncestralAllele dbSNP ancestral allele

rsHeterozygosity dbSNP variation average heterozygosity

rsMAF dbSNP variation global Minor Allele

rsMAFAllele dbSNP variation global minor allele

rsMAFCount dbSNP variation sample size

1000g AF 1,000 genomes global allele frequency

1000g AFR AF 1,000 genomes allele frequency in African population

1000g SAS AF 1,000 genomes allele frequency in South Asian population

1000g EAS AF 1,000 genomes allele frequency in East Asian population
(continued on next page)
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Table 2 (continued)
Column name Annotation

1000g EUR AF 1,000 genomes allele frequency in European population

espRefEACount ESP reference allele count in European American population

espRefAACount ESP reference allele count in African American population

espRefAllCount ESP reference allele count in all population

espAltEACount ESP alternate allele count in European American population

espAltAACount ESP alternate allele count in African American population

espAltAllCount ESP alternate allele count in all population

espEAMAF Minor allele frequency in European American population

espAAMAF Minor allele frequency in African American population

espAllMAF Minor allele frequency in all population

espAvgReadDepth Average sample read Depth

delta MESscore (%) % difference between the splice score of variant with the score of the reference base

wtMEScore WT seq. MaxEntScan score

varMEScore Variant seq. MaxEntScan score

delta SSFscore (%) % difference between the splice score of variant with the score of the reference base

wtSSFScore WT seq. SpliceSiteFinder score

varSSFScore Variant seq. SpliceSiteFinder score

delta NNSscore (%) % difference between the splice score of variant with the score of the reference base

wtNNSScore WT seq. NNSPLICE score

varNNSScore Variant seq. NNSPLICE score

DistNearestSS Distance to Nearest splice site

NearestSS Nearest splice site

localSpliceEffect Splicing effect in variation vicinity (New donor Site, New Acceptor Site, Cryptic Donor Strongly
Activated, Cryptic Donor Weakly Activated, Cryptic Acceptor Strongly Activated, Cryptic Acceptor
Weakly Activated)

SiftPred SIFT prediction

SiftWeight SIFT score ranges from 0 to 1. The amino acid substitution is predicted damaging is the score is
<=0.05, and tolerated if the score is >0.05.

SiftMedian SIFT median ranges from 0 to 4.32. This is used to measure the diversity of the sequences used for
prediction. A warning will occur if this is greater than 3.25 because this indicates that the prediction
was based on closely related sequences. The number should be between 2.75 and 3.5

PPH2pred PolyPhen-2 prediction using HumVar model are either “neutral, possibly damaging, probably damag-
ing” or “neutral, deleterious” depending on the annotation engine.

phyloP phyloP

PhastCons PhastCons score

GranthamDist Grantham distance

VaRank VarScore Prioritization score according to VaRank

AnnotationAnalysis Yes or No indicates if the variation could annotated by any annotation engine

Avg TotalDepth Total read depth average at the variant position for all samples analyzed that have the variation

SD TotalDepth Standard deviation associated with Avg TotalDepth

Count TotalDepth Number of samples considered for the average total read depth

Avg SNVDepth Variation read depth average at the variant position for all samples analyzed that have the variation

SD SNVDepth Standard deviation associated with Avg SNVDepth

Count SNVDepth Number of samples considered for the average SNV read depth
(continued on next page)
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Table 2 (continued)
Column name Annotation

familyBarcode Homozygote or heterozygote status for the sample of interest and its associated samples

Barcode Homozygote or heterozygote status for all sample analyzed together (Hom: 2; Het: 1; Sample name is
given at the first line of the file: ## Barcode)

Hom Count Number of homozygote over all samples analyzed together

Het Count Number of heterozygote over all samples analyzed together

Allele Count Number of alleles supporting the variant

Sample Count Total number of samples

immediately notice that the variant is also present in 28 other samples from the cohort, of

which in total 12 are homozygous and 17 heterozygous.

In order to allow inheritance analysis, a second barcode (the family barcode) represent-

ing only user selected samples can be defined. As an example in trio exome sequencing,

we have represented two typical pedigrees (Figs. 3B and 3C), one consanguineous family

on the left and one sporadic case on the right. In the case of consanguinity, homozygous

mutations are often the cause of the disease in the family. This could be highlighted by

selecting the “121” barcode indicating homozygous variants (“2”) in the proband inherited

from heterozygous parents (“1”). In the sporadic case, several hypotheses could be tested

including a de novo variant which could be highlighted using the barcode “010.”

Together with the barcode, simple counts on the individuals (homozygous, heterozy-

gous and total allelic counts) are also available and can easily be used to further filter

variants. Indeed, in rare diseases such as the Bardet-Biedl syndrome (BBS, OMIM#

209900), mutations are often private (i.e., one mutation found only in one family) (Muller

et al., 2010) meaning that their frequency in the population is very low. Counts can be used

to estimate the frequency of a known variant in the user cohort and add significant value

to variants not yet reported in any public variant database but for which a frequency can be

estimated based on the user’s cohort. As an example, looking at 2,888 non redundant SNVs

observed in 107 patients with moderate to severe intellectual disability, 979 did not have

any frequency information in the dbSNP and EVS databases. Such information could be

directly retrieved from the VaRank output.

The observed frequency of variants in public databases but also in private cohorts can

be a powerful filtering strategy. Using the same data (Fig. 3B), variant c.7911dup in ALMS1

is present only once in the cohort of patients at the homozygous state and is very likely the

disease causing mutation in this patient.

RESULTS AND DISCUSSION
VaRank was successfully applied in various human genetics studies both in diagnostics and

research. In total, more than 800 patients from several datasets of increasing complexity

including the Cockayne syndrome (10 genes tested, manuscript in preparation),

Bardet-Biedl syndrome (30 genes (Redin et al., 2012)), ataxias (60 genes), leucodystrophies

(70 genes, manuscript in preparation), congenital myopathies (142 genes (Vasli et al.,

2012) and 275 genes, manuscript in preparation), intellectual disability (217 genes,
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Redin et al., 2014) and exome sequencing (Scheidecker et al., 2014) have been analyzed

to highlight potential pathogenic variants.

In the following sections, we will provide insight into several datasets analyzed by

VaRank and that were used to validate the tool and to highlight its effectiveness. All the

input files and output files from the following datasets are available online (www.lbgi.fr/

VaRank).

Bardet-Biedl syndrome (BBS) dataset
The Bardet-Biedl syndrome (BBS; OMIM# 209900) is a pleiotropic recessive disorder,

part of the ciliopathies, characterized by extensive genetic heterogeneity counting to

date 19 genes (Aldahmesh et al., 2014; Scheidecker et al., 2014). We applied targeted high-

throughput sequencing for 30 ciliopathy related genes to 52 patients with clinical features

compatible with BBS (Redin et al., 2012). VaRank was used to annotate and rank the vari-

ants identified in those patients. Thirty-two cases could be solved by this approach leading

to frameshift, missense and splice site mutations all validated by Sanger sequencing (we ex-

cluded Copy Number Variations). Sequencing data from the 32 positive samples have been

reanalyzed using Alamut Batch version 1.1.11 and PolyPhen-2 v2.2.2 installed on our local

servers. A total of 784 non redundant variants have been annotated resulting on average

into 167 private variants per sample. We extracted the validated mutations and highlighted

the ranking position in the output files (Table 3). In 30/32 samples, mutations were ranked

first, while in the remaining ones they were present in the top five among ∼170 variants per

patient. This result clearly shows the effectiveness of the ranking in such situation.

As mentioned in the original paper, one variant is always ranked in first position and

represents a false positive described in BBS2 as a third allele mutation according to the

triallelic hypothesis (NM 031885.3:c.209G>A, rs4784677). It is flagged as pathogenic in

dbSNP, but it is too frequent to be a fully penetrant mutation according to the observed

frequency in the Exome Variant Server (EVS) (0.77%). Interestingly, using the barcode

this variant is very easily filtered out since it is present in almost all patients in our cohort

(31/32 samples).

Intellectual disability (ID) dataset
Intellectual disability is a common neurodevelopmental disorder (∼2% of children and

adolescents) (Ellison, Rosenfeld & Shaffer, 2013) that can be initiated by either environ-

mental, genetic or multifactorial causes. The monogenic forms are very heterogeneous

genetically, with several hundred genes identified so far. We present here the results of 203

patients affected with moderate to severe intellectual disability.

A first cohort of 107 patients was already analyzed by VaRank (Redin et al., 2014) and led

to the identification of 25 causal mutations (Table 4A). A second cohort of 96 additional

patients is reported here for which 12 causative mutations could be identified (Table 4B).

The identified mutations were all validated by Sanger sequencing (we excluded pathogenic

CNV). High-throughput sequencing data of protein-coding exons of 217 genes (first

cohort) and 275 genes (second cohort) (either on the X-chromosome or associated to

autosomal dominant or recessive forms of ID) were collected for the 25 positive known
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Table 3 Analysis of 32 patients with Bardet-Biedl syndrome. From the BBS dataset, mutations and ranking for 32 patients sequenced for 30 genes. The ranking for
each mutation has been obtained from the “filteredVariants” output. Mutations in italics are predicted to affect splicing.

Patient# Gene RefSeq Mutation (cDNA) Mutation (protein) Ranking

P11 c.[436C>T];[436C>T] p.[R146*];[R146*] Rank 1

ALD6a c.[436C>T];[(592-?) (830+?)del] p.[R146*];[ ?] Rank 1

ALO47 c.[479G>A];[479G>A] p.[R160Q];[R160Q] Rank 1

AIO57 c.[670G>A];[670G>A] p.[E224K];[E224K] Rank 1

AMK19 c.[951+1G>A];[1169T>G] p.[?];[M390R] Rank 1, Rank 2

P9 c.[1110G>A];[1110G>A] p.[ ?];[ ?] Rank 1

AKH61 c.[1169T>G];[1169T>G] p.[M390R];[M390R] Rank 1

P1 c.[1471+4G>A]; [1471+4G>A] p.[?];[?] Rank 2c

AHZ63b

BBS1 NM 024649.4

c.[1473+4T>A];[=] p.[?];[=] Rank 1

AGA99 c.[118-1G>C];[118-1G>C] p.[ ?];[ ?] Rank 1

P2 c.[345+5G>A];[345+5G>A] p.[?];[?] Rank 1

P7 c.[565C>T];[565C>T] p.[R189*];[R189*] Rank 1

ALG76 c.[626T>C];[626T>C] p.[L209P];[L209P] Rank 1

AKX44 c.[814C>T];[814C>T] p.[R272*];[R272*] Rank 1

AGL23

BBS2 NM 031885.3

c.[1992delT];[1992delT] p.[H665Tfs*675];[H665Tfs*675] Rank 1

P13 c.[149T>G];[149T>G] p.[L50R];[L50R] Rank 1

ALG5
BBS5 NM 152384.2

c.[413G>A];[413G>A;] p.[R138H];[R138H] Rank 1

AIZ46 c.[3G>A];[110A>G] p.[M1I];[Y37C] Rank 1, Rank 2

AIZ62 c.[571G>T];[724G>T] p.[E191*];[A242S] Rank 1, Rank 2

P10

MKKS NM 018848.3

c.[1272+1G>A];[1272+1G>A] p.[?];[?] Rank 1

ALB60 BBS9 NM 198428.2 c.[855del];[855del] p.[W285*];[W285*] Rank 1

ALS67 c.[271 272insT];[728 731delAAGA] p.[C91Lfs*95];[K243Ifs*257] Rank 1, Rank 2

AMA70 c.[271 272insT];[1201G>T] p.[C91Lfs*95];[G401*] Rank 1, Rank 2

JSL c.[285A>T];[2119-2120delGT] p.[R95S];[V707*fs] Rank 1, Rank 2

P8 c.[1181 1182insGCATTTAT];[1181 1182insGCATTTAT] p.[S396Lfs*401];[S396Lfs*401] Rank 1

AMR64 c.[1241T>C];[1241T>C] p.[L414S];[L414S] Rank 1

AKR68

BBS10 NM 024685.3

c.[1241T>C];[1241T>C] p.[L414S];[L414S] Rank 2

ALP79 BBS12 NM 001178007.1 c.[865G>C];[205C>T(;)1859A>G] p.[A289P];[L69F(;)Q620R] Rank 1, Rank 2

ALB64 c.[1724C>G];[1724C>G] p.[S575*];[S575*] Rank 1

AIA84 c.[3340del];[3340del] p.[E1112Rfs*1120];[E1112Rfs*1120] Rank 1

ADC44 c.[7904insC];[7904insC] p.[N2636Qfs*59];[N2636Qfs*59] Rank 1

AKO26

ALMS1 NM 015120.4

c.[10879C>T];[10879C>T] p.[R3627*];[R3627*] Rank 1

Notes.
a The second mutation of the patient, a complete heterozygous deletion of exon 8 and 9 (c.(592-?) (830+?)del) is a pathogenic CNV that cannot be ranked by VaRank.
b Parent of BBS patients, a single heterozygous mutations is expected.
c This validated mutation was filtered out in the “filteredVariants” results due to low sequencing quality (only 7 reads supported the variant) but ranked at the second position in the non-filtered

results.
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Table 4 Analysis of 203 patients with intellectual disability. (A) Mutations and ranking in the 25 positive patients from the 107 patients sequenced
for 217 genes (Redin et al., 2014). (B) Mutations and ranking from 12 novel positive patients with ID identified in an additional cohort of 96 patients
screened for 275 genes. Patients are sorted according to the mode of inheritance and the identified gene. Known mutations (from the literature)
are highlighted in bold. Ranking into parenthesis highlights the ranking of the variations with a similar score. Mode of inheritance include: AD,
autosomic dominant; AR, autosomic recessive; XL, X-linked; XLD, dominant on the X chromosome.

(A)

Patient# Sex Gene Chromosome Mode of
inheritance

Mutation (cDNA) Mutation (protein) Ranking

APN-58 M c.[613C>T];[=] p.[R205*];[=] Rank 2

APN-87 M
DYRK1A 21 AD

c.[621 624delinsGAA];[=] p.[E208Nfs*3];[=] Rank 1

APN-63 M GRIN1 9 AD c.[1733C>G];[=] p.[P578R];[=] Rank 1 (2)

APN-14 M MED13L 12 AD c.[6118 6125del];[=] p.[G2040Nfs*32];[=] Rank 1 (2)

APN-46 M RAI1 17 AD c.[2332 2336del];[=] p.[G778Efs*7];[=] Rank 1

APN-122 F SHANK3 22 AD c.[2955 2970dup];[=] p.[P992Rfs*325];[=] Rank 1

APN-38 M SLC2A1 1 AD c.[724C>T];[=] p.[E242*];[=] Rank 2

APN-139 M SYNGAP1 6 AD c.[3583-6G>A];[=] p.[?];[?] Rank 1

APN-41 M c.[514 517del];[=] p.[K172Ffs*61];[=] Rank 1

APN-117 F
TCF4 18 AD

c.[520C>T];[=] p.[R174*];[=] Rank 1

APN-138 M ATRX X XL c.[109C>T];[0] p.[R37*];[0] Rank 1 (2)

APN-137 M CUL4B X XL c.[811 812del];[0] p.[E271Aspfs*11];[0] Rank 1 (2)

APN-42 M DMD X XL c.[10889del];[0] p.[R3630Efs*27];[0] Rank 1

APN-113 M HCFC1 X XL c.[218C>T];[0] p.[A73V];[0] Rank 1

APN-82 M IL1RAPL1 X XL c.[894 903del];[0] p.[W299Tfs*18];[0] Rank 1

APN-68 M IQSEC2 X XL c.[3097C>T];[0] p.[E1033*];[0] Rank 1 (2)

APN-34 M c.[2152G>C];[0] p.[A718P];[0] Rank 1

APN-135 M
KDM5C X XL

c.[1296dup];[0] p.[E433*];[0] Rank 1

APN-16 M MAOA X XL c.[797 798delinsTT];[0] p.[C266F];[0] Rank 1

APN-130 F c.[952C>T];[=] p.[R318C];[=] Rank 2a

APN-142 F
MECP2 X XLD

c.[538C>T];[=] p.[R180*];[=] Rank 1a

APN-105 M PHF8 X XL c.[1249+5G>C];[0] p.[Y406Ffs*24];[0] Rank 4

APN-43 M SLC9A6 X XL c.[526-9 526-5del];[0] p.[?];[0] Rank 1

APN-110 M SLC16A2 X XL c.[1412T>C];[0] p.[L471P];[0] Rank 1

(B)

Patient# Sex Gene Chromosome Mode of
inheritance

Mutation (cDNA) Mutation (protein) Ranking

APN-206 F ANKRD11 16 AD c.[2904del];[=] p.[Glu969Argfs*8];[=] Rank 1 (2)

APN-237 F DYRK1A 16 AD c.[1205dup];[=] p.[Arg404Thrfs*10];[=] Rank 1 (2)

APN-176 F FOXG1 14 AD c.[755G>T];[=] p.[Gly252Val];[=] Rank 2 (3)

APN-188 F MBD5 2 AD c.[3949del];[=] p.[Gln1317Serfs*48];[=] Rank 1

APN-211 M MED13L 12 AD c.[2340 2343de];[=] p.[Thr781Metfs*19];[=] Rank 1 (2)

APN-200 M SYNGAP1 6 AD c.[1717C>T];[=] p.[Arg573Trp];[=] Rank 2

APN-226 F TBR1 3 AD c.[713 719del];[=] p.[Ser238Thrfs*17];[=] Rank 2 (2)

APN-149 M c.[990G>A];[=] p.[?];[=] Rank 1

APN-214 M c.[1726C>T];[=] p.[Arg576*];[=] Rank 2

APN-210 F

TCF4 18 AD

c.[1733G>A];[=] p.[Arg578His];[=] Rank 2 (2)a

APN-209 F ASPM 1 AR c.[2967G>A];[ 6920 6921del] p.[Trp989*];[Gln2307Leufs*10] Rank 1, Rank 2

APN-162 M KIAA2022 X XL c.[2725del];[0] p.[Ala909Profs*13];[0] Rank 1

Notes.
a Known mutation not annotated as pathogenic in dbSNP.
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patients and the 96 additional ones. A total of 8,388 non redundant variants have been

reannotated by VaRank using Alamut Batch version 1.1.11 and PolyPhen-2 v2.2.2,

resulting on average into 1,129 (±189) private variants per sample. Each sample has been

reanalyzed and a summary of the ranking results using the default filtration strategy for

this dataset defined by the biologists (frequency in dbSNP or EVS >1% and presence

in <3 samples) is available in Table 4. Among the 37 patients with causative mutations

identified almost all were ranked first or within the top five among 1,129 variants on

average demonstrating the usefulness of this strategy.

As an example, in a boy with autism spectrum disorder, attention deficit and

autoaggressive behavior, one mutation (c.797 798delinsTT, p.C266F) has been observed in

the MAOA gene. A total of 688 variants have been annotated by VaRank and the mutation

described for this patient could be ranked without filtering at position 8. When the usual

filters are applied (frequency in dbSNP or EVS >1%), the mutation is ranked at the first

position in the “filteredVariants.rankingByVar.txt” file. This result was the first mutation

report in the MAOA gene since 20 years (Piton et al., 2014).

Whole Exome Sequencing (WES) dataset
WES of a single patient with a clear BBS phenotype from a consanguineous Italian family

(Scheidecker et al., 2014) revealed for the first time mutations in the BBIP1 gene counting

since as the 18th BBS gene. A total of 50,569 non redundant variants have been annotated

by VaRank using Alamut Batch version 1.1.11 and PolyPhen-2 v2.2.2.

The nonsense mutation c.173T>G (p.Leu58*) in BBIP1 has been ranked at the 50th

position/50569 in the “allVariants.rankingByVar” file. Applying the default filtration

strategy (i.e., frequency in dbSNP or EVS >1% and sequence quality filters) changed

the ranking to the 6th position/4,908 (“filteredVariants.rankingByVar” file). This exome

sequencing dataset was analyzed together with 29 other exomes from unrelated patients

and pathologies for a BBS patient for which we could further filter variations using for

example the barcode. Given that the most frequent known disease causing mutation in BBS

is the c.1169T>G (p.M390R) mutation in BBS1 (Mykytyn et al., 2002), found in EVS at

the frequency of 26/12,694 (0.2%) at the heterozygous state, we used the barcode statistics

to further reduce the total number of variations. Being very tolerant, we kept variants

present less than four times at the heterozygous state or two times at the homozygous state

out of 29 samples. The final ranking placed the mutation at the forth position (and first

homozygous) out of 3,493 remaining variants.

The integration of these three datasets of increasing complexity (BBS with 30 genes

consolidated on 188 patients, ID with more than 200 genes in 121 patients and the WES

data consolidated for 35 samples) highlights major directions for further developments.

Considering the distribution of the non-redundant variation by functional category,

one can first observe, despite a different gene composition, that the distribution of the

categories is similar among the datasets (Fig. 5). The vast majority of the identified and

annotated variations are either intronic or synonymous. Those categories contain known

variations in dbSNP (∼85% have an rs#) and are either polymorphisms or rare variant.
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Figure 5 Representation of the non-redundant variations by functional type in 3 datasets. The chart
is built upon the Intellectual disability (ID) and Bardet-Biedl Syndrome (BBS) (consolidated from
188 patients addressed for BBS) datasets discussed in the Results section together with an enhanced
exome dataset (35 exomes). The “truncating” category corresponds to frameshift, nonsense, stoploss and
startloss.

Thus they are often considered as non-pathogenic. Nevertheless, some of these could

potentially affect the correct splicing of the closest gene. Although efforts are being taken

to enhance the predictions on splicing especially for the consensus sequences (Houdayer

et al., 2012; Jian, Boerwinkle & Liu, 2014), little is done in more distant regions including

enhancers sequences, branch point or even promoter regions. The 5’ and 3’ UTRs are

also sources of variations that are often overlooked but contain important functional

signals such as miRNA binding sites and polyadenylation signal (Chatterjee & Pal, 2009).

Missenses are one of the major variations sources and also one of the more difficult to

interpret. There is a high number of predictions methods and tools available aiming at

predicting the pathogenicity of this category of variant but there is still improvement

to be made (Flanagan, Patch & Ellard, 2010; Hicks et al., 2011; Tavtigian et al., 2008).

Recent approaches aimed at combining knowledge based information such as structural
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information for missense variants (Luu et al., 2012) or focusing only on orthologous

sequences (Wong & Zhang, 2014). Other interesting annotation sources might be included

as the assessment of non-frameshift indels (Bermejo-Das-Neves et al., 2014; Hu & Ng,

2012) and the consideration of CNVs to improve the decision-making. Those issues will be

amplified using whole genome sequencing (WGS).

CONCLUSION
The rationale behind VaRank is to provide a simple yet powerful tool for biologists and

researchers aiming to discover new human disease causing variants (i.e., mutations)

from DNA sequencing projects. VaRank is a comprehensive workflow for annotating

and ranking SNVs and indels that aims at collecting the major annotation sources. The

program is currently compatible with two annotation software namely Alamut Batch

and SnpEff. This could further expanded to other annotation solutions such as Annovar

(Wang, Li & Hakonarson, 2010) or VEP (McLaren et al., 2010). It stands out from other

solutions by being able to provide a summarized overview of the presence/absence status

of each variant within all patients (e.g., barcode and family barcode) and allowing users to

easily test several disease transmission hypothesis (recessive, dominant. . . ). The barcode

counts can serve as an internal frequency database in order to filter out known and

unknown frequent variants together with annotation errors and recurrent sequencing

errors. Moreover, a specific ranking for each gene is particularly appropriate in the case of

recessive diseases. Finally, as a command line tool it can easily be integrated into existing

bioinformatics pipelines and accelerate identification of causal variants. The manual and

a tutorial together with changelogs and various use cases are available via our dedicated

website at http://www.lbgi.fr/VaRank.
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