94 research outputs found

    Germline Mutation in NLRP2 (NALP2) in a Familial Imprinting Disorder (Beckwith-Wiedemann Syndrome)

    Get PDF
    Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans

    Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline

    Get PDF
    Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS mutation in two cases. To gain insights in the etiology of SpT and into properties of the male germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with an average of 6 (2±9) no

    Personalized recurrence risk assessment following the birth of a child with a pathogenic de novo mutation

    Get PDF
    Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1–2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)—that could be quantified in semen for paternal cases (recurrence risks of 5.6–12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Clinical Practice Recommendations on Genetic Testing of CYP2C9 and VKORC1 Variants in Warfarin Therapy

    Get PDF
    Objective: To systematically review evidence on genetic variants influencing outcomes during warfarin therapy and provide practice recommendations addressing the key questions: (1) Should genetic testing be performed in patients with an indication for warfarin therapy to improve achievement of stable anticoagulation and reduce adverse effects? (2) Are there subgroups of patients who may benefit more from genetic testing compared with others? (3) How should patients with an indication for warfarin therapy be managed based on their genetic test results? Methods: A systematic literature search was performed for VKORC1 and CYP2C9 and their association with warfarin therapy. Evidence was critically appraised, and clinical practice recommendations were developed based on expert group consensus. Results: Testing of VKORC1 (-1639G\u3eA), CYP2C92, and CYP2C93 should be considered for all patients, including pediatric patients, within the first 2 weeks of therapy or after a bleeding event. Testing for CYP2C95, 6, 8, or 11 and CYP4F2 (V433M) is currently not recommended. Testing should also be considered for all patients who are at increased risk of bleeding complications, who consistently show out-of-range international normalized ratios, or suffer adverse events while receiving warfarin. Genotyping results should be interpreted using a pharmacogenetic dosing algorithm to estimate the required dose. Significance: This review provides the latest update on genetic markers for warfarin therapy, clinical practice recommendations as a basis for informed decision making regarding the use of genotype-guided dosing in patients with an indication for warfarin therapy, and identifies knowledge gaps to guide future research.

    Clinical Practice Recommendations for the Management and Prevention of Cisplatin-Induced Hearing Loss Using Pharmacogenetic Markers

    Get PDF
    Currently no pharmacogenomics-based criteria exist to guide clinicians in identifying individuals who are at risk of hearing loss from cisplatin-based chemotherapy. This review summarizes findings from pharmacogenomic studies that report genetic polymorphisms associated with cisplatin-induced hearing loss and aims to (1) provide up-to-date information on new developments in the field, (2) provide recommendations for the use of pharmacogenetic testing in the prevention, assessment, and management of cisplatin-induced hearing loss in children and adults, and (3) identify knowledge gaps to direct and prioritize future research. These practice recommendations for pharmacogenetic testing in the context of cisplatin-induced hearing loss reflect a review and evaluation of recent literature, and are designed to assist clinicians in providing optimal clinical care for patients receiving cisplatin-based chemotherapy

    Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2

    Get PDF
    Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.−339_361dup for CHED1 and c.−370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.−274T>G and c.−307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies

    CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy–associated TCF4 triplet repeat

    Get PDF
    PURPOSE: To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1). METHODS: We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n = 11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis. RESULTS: CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing was possible for 18/22 alleles sequenced. Repeat length instability was observed for all expanded (≥50 repeats) phased CTG18.1 alleles analyzed. Furthermore, higher levels of repeat instability were associated with increased CTG18.1 allele length (mode length ≥91 repeats) indicating that expanded alleles behave dynamically. CONCLUSION: CRISPR-guided SMRT sequencing of CTG18.1 has revealed novel insights into CTG18.1 length instability. Furthermore, this study provides a framework to improve the molecular diagnostic accuracy for CTG18.1-mediated FECD, which we anticipate will become increasingly important as gene-directed therapies are developed for this common age-related and sight threatening disease
    • …
    corecore