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Abstract

Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty,

generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ

cells are under evolutionary constraint to curtail mutations and maintain genome integrity.

Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic

tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations

in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS

mutation in two cases. To gain insights in the etiology of SpT and into properties of the male

germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal

tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with

an average of 6 (2–9) non-synonymous variants per tumor, none of which is likely to be

oncogenic. The observed mutational signature of SpTs is strikingly similar to that of germline

de novo mutations, mostly involving C>T transitions with a significant enrichment in the

ACG trinucleotide context. The tumors exhibited extensive aneuploidy (50–99 autosomes/

tumor) involving whole-chromosomes, with recurrent gains of chr9 and chr20 and loss of

chr7, suggesting that aneuploidy itself represents the initiating oncogenic event. We pro-

pose that SpT etiology recapitulates the unique properties of male germ cells; because of

evolutionary constraints to maintain low point mutation rate, rare tumorigenic driver events

are caused by a combination of gene imbalance mediated via whole-chromosome aneu-

ploidy. Finally, we propose a general framework of male germ cell tumor pathology that

accounts for their mutational landscape, timing and cellular origin.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178169 May 22, 2017 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Giannoulatou E, Maher GJ, Ding Z, Gillis

AJM, Dorssers LCJ, Hoischen A, et al. (2017)

Whole-genome sequencing of spermatocytic

tumors provides insights into the mutational

processes operating in the male germline. PLoS

ONE 12(5): e0178169. https://doi.org/10.1371/

journal.pone.0178169

Editor: Gregory S. Barsh, Stanford University

School of Medicine, UNITED STATES

Received: May 4, 2017

Accepted: May 8, 2017

Published: May 22, 2017

Copyright: © 2017 Giannoulatou et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was primarily supported by

grants from the Wellcome (www.wellcome.ac.uk)

[091182 (to AG and AOMW) and 102731 (to

AOMW)]. We acknowledge funding from the

Medical Research Council (MRC—www.mrc.ac.

uk) through the WIMM Strategic Alliance

(G0902418 and MC_UU_12025) and the support

https://doi.org/10.1371/journal.pone.0178169
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178169&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178169&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178169&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178169&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178169&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178169&domain=pdf&date_stamp=2017-05-22
https://doi.org/10.1371/journal.pone.0178169
https://doi.org/10.1371/journal.pone.0178169
http://creativecommons.org/licenses/by/4.0/
http://www.wellcome.ac.uk
http://www.mrc.ac.uk
http://www.mrc.ac.uk


Introduction

Spermatocytic tumor (SpT; previously known as spermatocytic seminoma, also referred to as

TGCT type III) is a rare testicular germ cell tumor (TGCT) that is distinct epidemiologically

and pathologically from the more common classical seminoma and non-seminoma that occur

in adolescents and young men [1,2]. SpT presents as a slow growing, often large (3–30 cm) but

well-circumscribed tumor characterized histologically by the presence of three cell types that

resemble cells observed in normal adult spermatogenesis: a large cell measuring ~50–100 μm

in diameter and resembling spermatocytes, which explains the origin of the tumor’s name; a

lymphocyte-like small cell (~6–8 μm in diameter) and a more common intermediate cell-

type (~15–20 μm). These tumors are restricted to the testis and have no ovarian equivalent.

Although TGCTs are the most frequent tumors among Caucasian men aged 15–44 years in

the US, occurring at a rate of 5–7 cases per 100,000 men [3,4], SpT only represent 0.6–2% of all

diagnosed TGCTs, corresponding to a reported incidence of 0.4–2 cases per 1,000,000 [5].

Moreover, SpT is reported as being more prevalent in older men, with a mean age at diagnosis

of 54 years, although the diagnostic age range is wide (19–92 years) [6]. Clinically, the vast

majority of these uncommon tumors have an indolent course and orchidectomy is generally

curative; however rare occurrences of sarcomatous transformation and metastasis associated

with aggressive behavior and poor prognosis have been reported [2,7].

Interestingly, while classical type II TGCTs, now referred to as GCNIS (germ cell neoplasia

in situ)-related TGCT [2], originate from developmentally arrested embryonic germ cells

(gonocytes) and develop through the precursor GCNIS (previously known as carcinoma in

situ or intratubular germ cell neoplasia, unclassified) [3,4,8], SpT represents a more differenti-

ated testicular neoplasm derived from adult progenitors, which explains the older mean age at

diagnosis and the lack of an ovarian equivalent [9]. Spermatogenesis is a highly regulated pro-

cess that requires, from puberty onwards, the cyclic turnover of spermatogonial stem cells to

generate millions of haploid spermatozoa every day. In humans, this activity is initiated when

primordial germ cells (PGCs), derived from the inner cell mass, migrate and reach the devel-

oping bipotential gonads at gestation week 5, where specific patterns of gene expression in

somatic cells stimulate either male or female development. The commitment to male develop-

ment, triggered by the expression of the Y chromosome-linked SRY gene, involves the down-

regulation of genes required for initiation of meiotic replication and entry into meiotic pro-

phase I. In this setting, PGCs, now termed gonocytes, begin to multiply rapidly. At 17–18

weeks of gestation, gonocytes begin to mature into pre-/fetal spermatogonia, a process involv-

ing down-regulation of pluripotency factors, gradual migration to the basal lamina of the sex

cords, and a relative quiescence until after birth [10,11]. Following testicular descent at or

around birth, a surge in testosterone production and other testicular hormones occurs [12]. It

is believed that during this period, sometimes referred to as “mini-puberty”, the remaining

neonatal gonocytes migrate to the periphery of the cord and mature into type-A spermatogo-

nia. By the age of 2 years at the latest, all gonocytes have either differentiated or have been

eliminated by apoptosis. This mini-puberty step is essential for germ cell proliferation and

differentiation later in life because a failure to complete this stage, caused for example by crypt-

orchidism, results in loss of germ cells and increased risk of infertility [13]. During early child-

hood (around 3–4 years of age), a few type-A spermatogonia may mature to form type-B

spermatogonia and occasionally primary spermatocytes, although these do not complete meio-

sis and die. At puberty, spermatogenesis ‘sensu stricto’ begins when spermatogonial stem cells

enter a regular pattern of mitoses and meioses occurring in synchrony with the epithelial cycle

(i.e. every 16 days) that support both self-renewal and differentiation into spermatozoa during

adulthood.
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Whilst it is well accepted that unlike classical type II TGCTs that originate during embryo-

genesis, SpTs derive from post-natal precursors, the exact nature of the cell of origin of this

tumour has been controversial; despite its name, SpT is now thought to derive from spermato-

gonial cell populations. For example, cytofluorimetric analyses of DNA content have failed to

show the presence of a haploid component, and mitotic figures are frequently seen in all three

cell populations [14,15]. These observations suggest that SpTs occur through neoplastic trans-

formation of pre-meiotic germ cells, probably at a transition stage between spermatogonia and

spermatocytes [16]. Moreover, immunohistochemistry studies concur that distinct sub-classes

of SpTs may exist, each characterized by the expression of different combinations of protein

markers [17,18,19], raising the possibility that SpTs are not a single entity but represent a het-

erogeneous tumor type with multiple cellular and/or developmental time origins.

Although the mechanisms leading to the occurrence of SpT formation have not been pin-

pointed so far, we previously proposed that a subset of these tumors represent the extreme and

rare outcome of a universal process termed selfish spermatogonial selection that takes place in

the testis of all men as they age [20]. In this process, rare spontaneously-arising “selfish” gain-

of-function mutations in spermatogonia confer a growth/survival advantage, leading to clonal

expansion of the mutant spermatogonial cells over time. Unlike classical somatic mutations,

mutations arising in germ cells are heritable: selfish mutations are associated with a higher risk

of transmission to the next generation than neutral de novo mutations and account for the

high spontaneous birth rate and paternal age effect of some severe congenital disorders [21].

All selfish mutations documented so far affect proteins acting in the receptor tyrosine kinase

(RTK)/RAS/MAPK pathway. Targeted sequencing of genes in this pathway in a panel of 55

SpTs showed that ~20% carried activating mutations in either FGFR3 (2 samples) or HRAS (7

samples). Strikingly, all SpTs carrying selfish mutations were diagnosed in significantly older

men [average: 76.1 yr (range: 67–87 yr) vs. 55.3 yr (range: 33–86.5 yr) for mutation-negative

samples] [22].

Being rare and associated with a good prognosis, SpTs may be considered of little clinical

importance. However, biologically, these tumors represent a unique model for the study of cel-

lular processes specific to the post-natal male germline including regulation of spermatogene-

sis, mitosis-meiosis transition and, paradoxically perhaps, the occurrence of de novo germline

mutations. Here, in order to gain further insights into the homeostatic properties of male

germ cells and the origin and associated pathogenesis of SpTs, we have extended our targeted

sequencing of SpT cases and performed whole-genome sequencing of four tumor and matched

normal pairs and a SpT singleton, to our knowledge the only existing collection of frozen

tumor and matched normal samples for this rare tumor type. We show that the tumors we

sequenced are characterized by very low point mutation rates and exhibit signatures typical of

germline de novo mutations, highlighting the unique cellular context of their tissue of origin.

Our genome-wide analysis suggests that the SpTs we sequenced have arisen through an

unusual mutational mechanism whereby tumor growth is driven by a specific assortment of

whole-chromosome gains and losses. This process may be related to a failure to complete the

mitosis-meiosis transition, a cellular process occurring post-natally only in male germ cells.

Results

Genetic and epidemiological heterogeneity of SpTs

We previously established that a subset of SpTs carry pathogenic ‘selfish’ mutations in compo-

nents of the RTK/RAS/MAPK cascade, the signaling pathway known to be dysregulated in

selfish spermatogonial selection and paternal age effect (PAE) disorders [22] (Fig 1). To further

assess the contribution of selfish mutations to SpTs, a panel of 29 archival SpT samples (23 of
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which had previously undergone screening for a limited number of mutations [22,23]) were

analyzed for the presence of mutations at hotspot regions in seven genes for which germline

mutations have been implicated in selfish spermatogonial selection (FGFR2, FGFR3, PTPN11,

RET, HRAS, KRAS and NRAS) [20,24] using molecular inversion probes (MIPs) and Ion PGM

sequencing (S1 and S6 Tables). Because DNA extracted from formalin-fixed paraffin embed-

ded (FFPE) archival material is often degraded and of poor quality, MIPs were designed to

capture short (60–120 bp) genomic sequences (see Methods). Two tumors (H8T and SS8 from

individuals aged 55 and 86 years respectively) harbored the same heterozygous oncogenic

mutation in NRAS (c.182A>G, encoding p.Q61R), which was present in 47% (115/245) reads

in H8T and in 38% (48/128) reads in SS8 (Fig 1 and S1 Fig). NRAS p.Q61R is a well-known

oncogenic substitution previously reported in > 1300 tumor samples (COSMIC) including

skin, thyroid, large intestine and hematological malignancies. Although NRAS p.Q61R has

never been reported in the germline, substitutions associated with weaker gain-of-function

such as p.G13D and the non-canonical p.I24N/L, p.T50I and p.G60E have been associated

with the congenital disorder Noonan syndrome [25]. No mutations at known hotspots were

present in the other samples (S1 Table). To date, oncogenic mutations in three genes (FGFR3,

HRAS, NRAS) have been detected in 11 of the 61 (18%) SpTs that have been screened molecu-

larly for RTK/RAS mutational hotspots and for which we possess information about the age of

excision (Fig 1). All mutation-positive samples were from patients� 55 years old and were sig-

nificantly older than samples without detected mutation (mean 75.1 years vs. 55.3 years in

mutation-negative samples; t-test p< 0.0001).

Whole-genome landscape of SpTs: Ploidy, zygosity, CNVs and

rearrangements

To gain further insights into the pathogenesis of SpTs, we sequenced the whole-genomes of

four fresh frozen (FF) tumor-matched normal (blood or tissue adjacent to the tumor) pairs

(SpT1, SpT4, SpT6, SpT8) sampled from individuals aged 44–60 years and a FF tumor single-

ton (SpT3, from a man aged 66 years), all of which had previously tested mutation-negative in

our targeted resequencing screen [22,23] (Fig 1 and S1 Table). Tumors and matched-normal

controls were sequenced using Illumina technology to a mean coverage of 52x and 26x, respec-

tively. We determined the chromosomal copy number of each tumor based on relative cover-

age depth of the tumor to its matched diploid control—or reference diploid genome in the

case of the SpT3 singleton (Fig 2, S2 Fig and S2 Table). The contamination of tumor DNA by

normal diploid cells was shown to be minimal for most tumors, except for SpT8 that exhibited

an estimated 15–20% wild-type contamination. The median autosome number was 72 (range:

Fig 1. Mutation status of SpTs in relation to age at diagnosis. Age at presentation of 61 SpT samples that

were screened for hotspot mutations in genes associated with selfish spermatogonial selection in this and in

previous studies [17, 18]. Mutational status indicated by color chart on the Figure. In this study, out of the 29

FFPE samples screened (S1 Table), NRAS p.Q61R mutations were identified in two cases (aged 55 and 86

years); the other mutation-positive cases were previously documented in [17, 18].

https://doi.org/10.1371/journal.pone.0178169.g001
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50–99), confirming the extensive aneuploidy previously described for these tumors [15,26,27]

(Table 1). One tumor was near-tetraploid [SpT3 (99 autosomes and 2 copies each of X and

Y)], three tumors were near-triploid [SpT1 (76 autosomes and 2 copies each of X and Y), SpT6

(64 autosomes, 2 copies of X and 1 copy of Y), SpT8 (72 autosomes and 2 copies each of X and

Y)], and one tumor was near-diploid [SpT4 (50 autosomes and 1 copy of X and Y)]. For tumor

SpT1, previous analyses of single cell karyotypes (performed by fluorescence in situ hybridiza-

tion (FISH) and spectral karyotyping (SKY)) are in agreement with the chromosome number

Fig 2. Circos plots of the four SpT tumors with matched normal tissue showing somatically acquired events. From outside

inwards, the first ring represents chromosomal copy number (inferred from relative sequencing depth); color indicates chromosomal

copy number as illustrated in key; the second ring shows the relative allele frequency of the minor (B-allele) allele for one million

common SNPs (green color indicates LOH (loss of heterozygosity)); the third ring indicates chromosome number adjacent to a

representative ideogram of the chromosome, with centromeric region highlighted in red. In the inner ring, radial blue lines correspond

to all called acquired SNVs and indels, with validated coding non-synonymous mutations shown as radial red bars and labelled by

their respective gene name. The tumor name, ploidy number (also see Table 1 and S2 Table) and total number of SNVs and indels

(S3 Table) are presented in the center of each plot. Details of the location of the coding variants are given in S3A Table.

https://doi.org/10.1371/journal.pone.0178169.g002
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obtained from relative coverage depth of the WGS data [15,27]. Hence, sequence data gener-

ated by bulk tumor DNA analysis reflect the integral chromosomal composition of the tumor.

Overall the tumors harbored more chromosomal gains than losses over their basic ploidy

number (Fig 2, S2 Fig, Table 1 and S2A Table). Across the five tumors, we observed consistent

gains for chr9 (Permutation Test, adjusted p-value for multiple testing = 0.0097) and chr20

(p< 1x10-5) as well as recurrent losses of chr15 and chr22 (p-value = 0.0066), and chr7 and

chr13 (p-value = 0.047) over the basic ploidy number of each tumor. Except for a few chromo-

somal arms [gains of chr5p (which was present at 5 copies in SpT1, a tumor with 4 whole

chr5), chr9p (5 copies in SpT4, a tumor with 3 whole chr9), and chr9q (5 copies in SpT6, a

tumor with 4 whole chr9) (S3 Fig), and losses of chr19q in SpT4 and chrXq in SpT6; (S2A

Table; for breakpoint details see S2B Table)], the observed copy number variations involve

whole-chromosomes. No acquired structural rearrangements, large (> 100 kb) intra-chromo-

somal copy number variations or gene fusions were observed. Analysis of the relative coverage

depth for the four tumors with their matched controls on a gene-by-gene basis (exon by exon)

was performed and no local amplification or intra-chromosomal copy number variations were

observed. Analysis using the model-based algorithm OncoSNP-Seq [28], further confirmed

the copy number and zygosity (B-allele frequency) determined for each chromosome using

Table 1. Chromosome Copy number and zygosity of whole-genome sequenced SpT samples.

Chr SpT1 chr

number

SpT1

zygosity

SpT3 chr

number

SpT3

zygosity

SpT4 chr

number

SpT4

zygosity

SpT6 chr

number

SpT6

zygosity

SpT8 chr

number

SpT8

zygosity

adjusted P-

value loss

adjusted P-

value gain

1 4 2:2 4 2:2 3 2:1 3 2:1 3 2:1 NS NS

2 3 2:1 4 2:2 2 1:1 3 2:1 3 2:1 NS NS

3 3 2:1 4 2:2 2 1:1 3 2:1 4 3:1 NS NS

4 3 2:1 4 2:2 2 1:1 2 1:1 3 2:1 NS NS

5 4 (5)# 3:1 (3:2) 4 2:2 2 1:1 3 2:1 3 2:1 NS NS

6 5 3:2 6 5:1 2 1:1 4 3:1 4 3:1 NS NS

7 2 1:1 5 3:2 2 1:1 2 1:1 2 1:1 0.047 NS

8 3 2:1 3 2:1 2 1:1 3 2:1 3 3:0 NS NS

9 5 3:2 6 4:2 3 (4–5)# 2:1 (3:1–

4:1)

4 (5)# 3:1 (4:1) 5 4:1 NS 0.0097

10 4 2:2 5 3:2 2 1:1 3 2:1 5 3:2 NS NS

11 3 2:1 4 2:2 2 1:1 2 1:1 3 2:1 NS NS

12 3 2:1 4 2:2 2 1:1 3 2:1 3 2:1 NS NS

13 3 3:0 3 2:1 2 1:1 3 2:1 2 1:1 0.047 NS

14 4 3:1 3 2:1 3 2:1 3 2:1 3 2:1 NS NS

15 3 2:1 3 2:1 2 1:1 2 1:1 2 2:0 0.0066 NS

16 3 2:1 4 2:2 2 1:1 3 2:1 3 2:1 NS NS

17 4 3:1 4 2:2 2 1:1 3 2:1 3 2:1 NS NS

18 3 2:1 4 2:2 3 2:1 3 2:1 4 2:2 NS NS

19 4 3:1 5 3:2 2 1:1 3 2:1 3 2:1 NS NS

20 5 3:2 8 6:2 4 2:2 4 2:2 5 3:2 NS < 1e-05

21 3 2:1 8 6:2 2 1:1 3 2:1 4 3:1 NS NS

22 2 1:1 4 2:2 2 1:1 2 1:1 2 1:1 0.0066 NS

X 2 2:0 2 2:0 1 1:0 2 2:0 2 2:0 NA NA

Y 2 2:0 2 2:0 1 1:0 1 1:0 2 2:0 NA NA

# in cases of chromosomal arm amplifications, the statistical tests (see S2A Table) were run using the lowest chromosome copy number (full integral

chromosome copy number)—detail of breakpoints are given in S2B Table; NS (not significant); NA (not applicable).

https://doi.org/10.1371/journal.pone.0178169.t001
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the relative allelic ratio of common SNPs (Fig 2, S2 Fig and S2B Table). We observed occur-

rences of loss of heterozygosity (LOH) for whole-chromosomes, equivalent to uniparental dis-

omy (UPD) or trisomy, for chr13 (SpT1, allelic ratio 3:0), chr8 (SpT8, allelic ratio 3:0) and

chr15 (SpT8, allelic ratio 2:0).

Spectrum of somatic mutations in SpTs

Given the extensive tumor aneuploidy associated with SpTs, somatic SNV identification of

the four tumor-matched control pairs was performed using two different calling algorithms

(Platypus [29] and MuTect2 [30]) in order to maximize the specificity of the variant calls.

Across the four tumors, a total of 37 coding variants were called by both algorithms, including

24 non-synonymous exonic variants (Fig 2 and S3A Table); among this latter group, 22 (92%)

variants were validated by dideoxy-sequencing (data not shown). A further 31 non-synony-

mous exonic calls made by a single algorithm (8 by MuTect2 and 23 by Platypus) were visual-

ized in Integrative Genomics Viewer (IGV) [31] to rule out gross-alignment or mis-mapping

errors. From this analysis, another variant in NPHS1 present at 38% (22/58 mutant reads), was

validated by dideoxy-sequencing. This variant was identified in SpT6 and was not called by

MuTect probably because the sample N6T, the normal matched control to SpT6, exhibited

1/25 mutant read (S3A Table). This analysis shows that the strategy of using two calling algo-

rithms provides high specificity without compromising on sensitivity (estimated > 90%) for

somatic variant detection. Hence, we applied this approach genome-wide and overall an aver-

age of 610 somatic variants were identified by both algorithms across the four tumors (range:

362–786) (S3B–S3G Table). This number corresponds to an extremely low genome-wide

mutational burden of ~0.2 SNV per Mb. The number of SNVs per tumor was highly correlated

to the total chromosome number (r = 0.97; p-value = 0.025). No small indels and multiple nu-

cleotide variations (MNV) located near or within exons were called by both algorithms, while

indel calls made by a single algorithm (3 indels by MuTect2 and 19 indels by Platypus) were

visualized in IGV and confirmed to be false positives. No single variant was shared across tumors

and no known selfish or oncogenic mutations were identified (S3 Table). Overall, an average of

5.75 non-synonymous variants were identified per tumor, ranging from two variants (SpT4,

near-diploid), five (SpT6), seven (SpT8) to nine (SpT1) per tumor, which indicates an overall

genome-wide estimate of 0.2 (0.12–0.25) somatic SNVs/Mb (Fig 3A). Although we were not

able to analyze somatically-acquired variants for the SpT3 singleton, coding variants not present

in the reference genome were individually examined and compared to the COSMIC database

confirming that no known driver mutation was present in the sample (data not shown).

Next, we examined the allelic ratio at which somatic variants were observed in the tumors.

This analysis revealed that genome-wide the mutant allelic ratio tended to be low (< 50%) and

inversely correlated with the chromosome copy number on which the mutations took place

(Spearman rho = -0.42; p-value < 2.2 x 10−16) (Fig 3B). For the majority of variant calls these

low mutant allelic ratios are consistent with the mutation being present only on a single chro-

mosome (S4 Table). This observation implies that the chromosomal gains (n� 3) must have

preceded the acquisition of the somatic point mutations. Even in instances of UPD/LOH

observed for three whole-chromosomes across two tumors, the mutant allele ratio was consis-

tent with the somatic event having occurred secondarily on an already existing single copy of

the parental chromosome—because 99% of the calls were observed at allelic ratio < 90% (S4

Table). This pattern of global low allelic frequency is best explained by a model in which the

somatic SNVs identified in SpTs are late events in the pathogenesis of these tumors and hence

are likely to represent passenger mutations (Fig 3C). The same pattern of low allelic ratio was

also observed for the coding variants (S3A Table); hence, although some candidate pathogenic

Whole-genome sequencing of spermatocytic tumors
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Fig 3. Single nucleotide variant analysis. (A) Mutation burdens in different tumor types. Compared to solid

tumors with an adult age of onset (purple), SpT (light blue) have an extremely low number of non-synonymous

SNV mutations, similar to pediatric cancers (green) and slightly lower than classical germ cell tumors (dark

blue). Median values and interquartile range are presented. Data for other cancers from Vogelstein et al. 2013

[50]; Brabrand et al. 2015 [46]. (B) Box plots of the variant allele frequency observed in each SpT, binned by
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mutations were identified in the coding region of genes that have been associated previously

with cancer, such as MAP3K1 [32], FAT1 [33], POLR2A [34], LRP5 [35] and PRPF8 [36], the

low allelic ratio (median = 32.6%; range: 16–55%) at which the variants were observed in SpTs

(S3A Table) is not mechanistically consistent with a pathogenic role for a driver mutation.

Looking at the detail of the mutations identified genome-wide, all tumors showed a similar

pattern of somatic substitutions: the majority (1821/2417; 75.3%) of the SNVs were transitions,

with C>T (or G>A) transitions accounting for 51.4% (1243/2417) of all mutations. Among

these, 56.6% involved CpG dinucleotides (704/1243; Fig 4A); transitions at CpGs represent

the most common mutational signature in the human genome and are associated with a spe-

cific mutagenic mechanism involving deamination of 5-methylcytosine to thymidine. Sper-

matogonial stem cells display extensive and dynamic regulation of DNA methylation during

development [37,38]. To assess whether methylation status in human testes may influence SpT

mutation rate, we compared the locations of the SpT variants to methylation datasets for a tes-

ticular tissue sample and two well-characterized cell lines obtained by bisulfite-treated gDNA

sequencing as part of the ENCODE Project Consortium [39]. Among the 1,151,596 CpG sites

analyzed across the genome of a human testis from a 41-year old donor (GSM683850), 11

overlapped with sites that were mutated in SpTs. While genome-wide in the testicular tissue,

23.2% of CpG sites are associated with methylated regions (defined by more than 50% of meth-

ylated reads), in SpTs, we observed that 10 of the 11 overlapping transitions were in methylated

regions, suggesting that in this tissue methylated CpGs are significantly more likely to mutate

than unmethylated CpG sites (p-value = 3.87 x 10−6, binomial test). Association between SpT

variants and methylation sites for the human embryonic stem cell line H1-hESC and the lym-

phoblastoid cell line (GM12878) was less significant (p-value = 1.31 x 10−5 and p-value = 0.037

respectively) (S5 Table).

Higher resolution SNV analysis, relying on the local trinucleotide context in which each

mutation took place, showed a striking overlap (Pearson r = 0.92, p-value < 2.2 x 10−16) with

the mutational profile documented for 43,942 high-confidence de novo germline mutations

compiled from previously published WGS of 950 families [40,41,42,43] (Fig 4B) or a smaller

SNV fraction that are known to have a paternal origin [43] (Fig 4C). We find that in SpTs,

CpG transitions took place most frequently in the ACG>ATG trinucleotide context (Fig 4A);

this represents a significant enrichment when compared to CCG>CTG, the second most fre-

quent context (p-value = 0.0062, one-sided pair-wise t-test), a feature also observed for de novo
germline mutations [41,43].

Discussion

The integrated analysis of the mutational landscape of cancer genomes has provided a power-

ful approach to study specific mutational mechanisms leading to tumor formation but also

the copy number of the chromosome on which each SNV is located. Variant allelic ratios tended to be low

(< 50%) and inversely correlated with the chromosome copy number on which they occurred (indicated at the

bottom of the Figure). The total number of variants reported is shown as a bar plot at the top of the panel B.

Allelic ratio data for non-synonymous SNVs are given in S3A Table; data for individual chromosomes are

given for each tumor in S4 Table. (C) Schematic explaining the impact of mutational event order on expected

variant allele frequency (VAF) in the case of (3n) chromosome number. In the upper panel, an SNV has

occurred before the event of chromosome gain/duplication leading to trisomy. This will result in the

observation of either high variant allele frequency (~66%) or low VAF (~33%) for the acquired SNV,

depending which chromosome has been duplicated (green or blue, respectively). Assuming the SNV is a

‘passenger’ mutation, the two scenarios are anticipated to be observed with equal frequency; for a ‘driver’

mutation, the high VAF (66%) would be observed more commonly. In the lower panel, chromosomal gain/

duplication has preceded the occurrence of the SNV. In this case, the VAF of the acquired SNV will always be

observed at a low level (�33%).

https://doi.org/10.1371/journal.pone.0178169.g003
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Fig 4. Trinucleotide analysis of somatic SNVs. (A) Trinucleotide context of somatic SNVs in SpT reveals a high frequency of

mutations occurring at CpGs, most commonly in the ACG>ATG context. (B) The distribution of 43,942 de novo germline mutations

identified from WGS of family trios reveals a strikingly similar profile. Data from Kong et al. 2012 [40], Goldmann et al. 2016 [43],

Rahbari et al. 2016, [41] and Turner et al. 2016 [42]. (C) The profile of 5,640 paternally originating de novo germline mutations in

also similar (Goldmann et al. 2016) [43]. In A-C, each of the six substitution subtypes: C>A, C>G, C>T, T>A, T>C, and T>G (top)

are further divided by incorporating information on the bases immediately 5’ and 3’ (seen on the lower axis) generating 96 possible

mutation types. The contribution made by each SpT is colour-coded in A; and in B-C, the black bars represent transitions, while

grey bars are transversions.

https://doi.org/10.1371/journal.pone.0178169.g004

Whole-genome sequencing of spermatocytic tumors

PLOS ONE | https://doi.org/10.1371/journal.pone.0178169 May 22, 2017 10 / 24

https://doi.org/10.1371/journal.pone.0178169.g004
https://doi.org/10.1371/journal.pone.0178169


affords a unique view, although through a ‘cracked lens’ [44], into the normal cellular pro-

cesses shaping tissues of origin [45]. Although whole-exome sequencing (WES) was recently

used to describe the mutational landscape of classical seminoma and non-seminoma, the most

common forms of TGCTs [46,47,48,49], to our knowledge the present study represents the

first WGS analysis of any type of TGCT. By providing a genome-wide overview of the muta-

tional landscape acquired by tumor samples, WGS offers insights into the processes responsi-

ble for tumor pathology. Unlike classical TGCTs, which have an embryonic origin, SpTs are

late adult-onset tumors that uniquely originate in the context of the post-natal germline

[16,17] and therefore provide an opportunity to study the properties and mutational processes

of a population of cells whose genetic integrity is crucial to the survival of our species.

Whilst somatic mutations in FGFR3 and HRAS have previously been associated with SpTs

[22,23], through the targeted screening of a panel of archival samples we identified two addi-

tional samples carrying a pathogenic mutation in NRAS; overall the mutation-positive tumours

cluster significantly towards the older population of men with SpTs (Fig 1). By contrast, our

investigation of the whole genomic landscape of five mutation-negative tumors (sampled from

an average age range and to our knowledge the only collection of frozen samples) surprisingly

indicates that genome-wide no candidate driver mutations could be identified in these sam-

ples. Instead, these TGCTs are characterized by a very ‘quiet’ and unusual mutational land-

scape that distinguishes them both from other TGCTs and other somatic adult-onset solid

tumors. Analysis of somatic SNVs showed that the SpTs we sequenced carry an extremely low

mutation load of ~0.2 SNVs/Mb, similar to, or lower than, pediatric tumors and about half of

that estimated for classical TGCTs [50], despite the fetal origin of this latter tumor type (Fig

3A). This low mutation load is consistent with direct measurements of germline mutation rate

based on parent-child trio WGS which concur that at ~1.2 x 10−8 per nucleotide per generation

[40,43], the average human point mutation rate is several orders of magnitude lower than

spontaneous mutation rates documented for somatic tissues [51]. Moreover, analysis of variant

allelic ratio showed that genome-wide the allelic ratios at which acquired SNVs were observed

are not consistent with a driver role and strongly suggest that these mutational events have

occurred late in the tumor’s evolution and consist of randomly accumulating ‘passenger’

mutations (Fig 3B and 3C).

We observed that the majority of the 2,417 SNVs identified across the four SpTs were tran-

sitions (75.3%), with most of the C>T (or G>A) (56.6%) taking place at CpG dinucleotides, a

signature characteristic of a mutational process known to be associated with methylation of

CpG and involving their deamination to thymidine (TpG) [45]. Consistent with this observa-

tion, we showed an increased mutation load for transitions at CpGs in regions known to be

methylated in adult testicular tissue. The SpT mutational signature is strikingly different from

that found in the other TGCTs that originate during embryonic development and are charac-

terized by relatively high C>A (or G>T) transversion and low C>T (or G>A) transition rates

[46,48], a mutational pattern which is likely to reflect the global DNA demethylation repro-

gramming of primordial germ cells (PGCs) occurring during fetal development and main-

tained in the neoplastic precursor cells [52,53].

Higher resolution mutational spectra defined by the trinucleotide contexts in which SNVs

take place showed that SpTs’ mutational signature is typical of germline de novo mutations

(Fig 4) [41,43]. We observed a significant enrichment of transitions taking place in the specific

sequence context ACG>ATG, which has also been documented for paternal germline de novo
mutations (Fig 4C) [43]. Importantly, these findings suggest that most germline de novo muta-

tions occur through the same mutational process and within a similar cellular environment as

somatic mutations in SpTs. In addition, the low SNV mutation load observed in SpTs (and in

agreement with the low trans-generational human mutation rate, measured through WES/
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WGS studies of family trios) highlights that the male germline is refractory to accumulation of

de novo point mutations, pointing that DNA repair, apoptotic and/or cellular turnover mecha-

nisms are likely to be under tight control in this tissue to curtail mutation rates [41,51].

By contrast to the low allelic ratios and mutation rates observed for SNVs, we report that

the five SpTs we analyzed by WGS are characterized by non-random whole-chromosome

aneuploidies. These findings are further supported by previously published data of another

nine SpT cases [26,27] and considered together, relative gains of chr9 (14/14 cases) and chr20

(10/14 cases) as well as loss of chr7 (10/14 cases)—and to a lesser extent, chr13, chr15, chr22—

are recurrently observed in SpTs (S2C Table). Notably, chr12 (or 12p), which is commonly

gained in classical (type II) TGCTs (seminoma and non-seminoma) (54), was not altered over

the basic ploidy number in any of the tumors documented so far (S2C Table). Moreover, chr9

and chr20 are not recurrently affected in classical TGCTs [47,48,49,54], further highlighting

the distinct molecular pathology of SpTs.

Based on the observation that the aneuploidy pattern within each tumor is non-random

(S2C Table) and appears to be stable over time, we propose that the initiating event driving

oncogenesis in SpTs involves the whole-chromosome imbalance itself. A similar pathogenic

mechanism has been proposed for other tumors characterised by similar properties such as

high hyperdiploid childhood acute lymphoblastic leukemia. In these cancers, aneuploidies,

through specific altered gene dosage, induce changes in gene expression profiles that cause

proliferation and are responsible for promoting tumor phenotypes [55].

Without recurrent focal events and/or point mutations, it is difficult to delineate the mini-

mal genomic regions that promote SpT pathogenesis. However, the presence of important

genes on chromosomal regions subject to recurrent copy number imbalance enable us to

develop a model of SpT pathogenesis (Fig 5A) that, although currently speculative, can be used

as a framework and tested by future experiments and observations. We note, first, that human

chr9 and chr7 carry genes that are known to be dosage-sensitive regulators of the mitosis-mei-

osis transition (Fig 5A). Interestingly, in the two tumors with gains of chr9 arm tips, the

regions gained encompass the DMRT1 (Doublesex And Mab-3 Related Transcription Factor

1) gene located on 9p24.3 and SOHLH1 (Spermatogenesis and oogenesis specific basic helix-

loop-helix 1) locus on 9q34.3 (in SpT4 and SpT6, respectively) (Fig 2, S3 Fig). In mouse,

Dmrt1 has a crucial role in coordinating the mitosis-meiosis progression via a dual mecha-

nism; (1) it promotes spermatogonial development by activating spermatogonial differentia-

tion genes, such as its direct target Sohlh1 and (2) it supports self-renewal by repressing the

entry into meiosis of undifferentiated spermatogonia via inhibition of retinoic acid (RA)-

response genes such as Stra8 (stimulated by retinoic acid 8), a gene required for initiation of

the meiotic program and spermatogonial differentiation in mouse testes [56,57]. Stra8-defi-

cient mouse testes lack meiotic and post-meiotic cells and accumulate undifferentiated type A

spermatogonial cells that progressively invade the seminiferous tubules, causing gross over-

growth in ~50% of testes in aged mice [58]. This phenotype is reminiscent of intratubular SpT,

a lesion believed to be the precursor to SpT that has been observed in some instances alongside

SpTs [1,17]. Intriguingly, STRA8 is located on human chr7, copies of which are lost in 10/14 of

SpT cases, suggesting that the expansion of tumor cells may be driven by an altered balance of

RA pathway effectors that converge to inhibit the mitosis-meiosis transition.

DMRT1 has also been proposed to be a key negative regulator of meiotic entry in the

human gonads. DMRT1 protein is strongly expressed in spermatogonia type-A (A-pale) and

type-B, but is not detectable in leptotene spermatocytes, suggesting that down-regulation of

this factor is crucial to the progression of meiosis [19]. Moreover, DMRT1 has previously been

shown to be over-expressed in SpTs [27,59]. Other factors outside the RA pathway that may be

relevant to the pathology of SpTs include the Xeroderma Pigmentosum Type A (XPA) gene
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Fig 5. Model of SpT pathogenesis. (A) Model for the role of key regulators of the retinoic acid pathway in mitotic-meiotic transition. In

murine spermatogonia, Dmrt1 inhibits meiosis via direct transcriptional repression of Stra8, indirect repression of the RA pathway, and the

direct promotion of Sohlh1 expression. Dmrt1 expression is lost as B spermatogonia undergo the transition to pre-leptotene spermatocytes,

resulting in upregulation of Stra8 and subsequent meiotic progression. Gain of human chr9 (containing DMRT1 and SOHLH1) and loss of

chr7 (containing STRA8) in SpTs may drive expansion of tumor cells by altering the mitosis-meiosis transition leading to re-entry into mitosis.

Model based on Matson et al. (2010). (B) Cellular development and differentiation during normal spermatogenesis and in TGCTs. In this
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located on chr9q22.3, a key regulator of the NER (Nucleotide-Excision Repair) pathway that is

a diagnostic marker for SpT [9]; the DNA Methyltransferase DNMT3b and the cancer testis

antigen (CTA) BORIS ((brother of the regulator of imprinted sites, also known as CTCFL

(CCCTC-binding factor-like)); both genes are known to be up-regulated in SpTs [27] and are

located on chr20, which is gained in 11/14 SpTs (S2C Table). Moreover, Boris mutant mouse

testes are smaller than their wild-type counterparts because spermatogonia fail to enter meiosis

and undergo apoptosis [60].

As outlined in Fig 5A and 5B, we speculate that the combination of simultaneously acquired

gains of chr9/chr20 (leading to increased expression of molecules promoting mitosis such as

DMRT1, SOHLH1, BORIS) and loss of chr7 (associated with reduced expression of the mei-

otic promoting factor STRA8) converge to alter the tight genetic circuitry responsible for con-

trolling the mitosis-meiosis transition; this rare combination of factors could provide a unique

stage in which differentiating spermatogonia unable to proceed through meiosis (because of

low STRA8 levels), are instead instructed to re-enter a proliferative course. Consistent with the

characteristic presence of three different cell types observed in SpTs and cytometric analyses of

DNA content [14,15], this process is likely to be relatively ‘leaky’, occasionally allowing cells to

enter the differentiation pathway and initiate meiosis. Of note, SpTs are associated with a high

apoptotic index that may be indicative of the failure to complete the mitosis-meiosis transition

[61]. This proposal is further supported by the simultaneous expression of meiosis regulators

(DMRT1, SCP3, CYPB26B1, XPA) and spermatogonial markers (MAGEA4, FGFR3, SSX,

SAGE1) in most SpTs [9,17,18,59].

In this scenario, it is unclear at which stage of development the SpTs would arrest before re-

entering mitotic proliferation. In budding yeast, commitment to meiosis (and sporulation)

does not occur until the end of meiotic prophase I, a stage at which DNA has already been rep-

licated, homologs have paired and recombination has been initiated. Up to this point, if culture

conditions are modified, cells may re-enter mitosis and ‘return to growth’, a process precisely

controlled by CDK and cyclin genes and that allows cells to faithfully segregate whole chromo-

somes; dysregulation of this process in mutant yeast cells leads to an aberrant division pattern,

an increase in genome copy number and chromosomal aneuploidy [62]. In the nematode C.

elegans hermaphrodite germline, the mitosis-meiosis transition can also be reversed through a

process called dedifferentiation. In this system, the key mediators of the mitosis-meiosis transi-

tion are PUF (Pumilio and FBF) RNA-binding proteins, and removal of the PUF-8 protein

leads to formation of germline tumors that derived from primary (and occasionally secondary)

spermatocytes. Interestingly, the mild phenotype of the PUF-8 mutants is greatly enhanced by

the activation of the MAPK pathway [63], probably by promoting both dedifferentiation and

proliferation. We envisage that a similar process, although relying on the concerted activation

of different mitosis-meiosis regulators present on specific chromosomes, may also be operat-

ing in the mammalian testis.

schematic, age-related development proceeds towards the right and differentiation proceeds downwards. Impaired differentiation of

primordial germ cells lead to type I TGCTs in infants. Differentiation arrest of gonocytes leads to germ cell neoplasia in situ [74], precursor

cells that will develop into TGCT II in young adults. In early childhood, from mini-puberty, pre-spermatogonia (Pre-spg) begin to divide,

mature into B-type spermatogonia and occasionally differentiate into primary spermatocytes (pathway coloured blue). Complete meiotic

division and spermiogenesis begins at puberty. Post-pubertal spermatogonia (Adark, Apale and B) proliferate and differentiate to form primary

spermatocytes undergoing meiosis to form haploid spermatids which mature into spermatozoa (pathway coloured purple). SpTs (TGCT III)

are proposed to be initiated post-natally (either during infancy or early puberty (blue) or during adulthood (purple)). During adulthood, selfish

mutations in the RTK/RAS/MAPK pathway that arise spontaneously in adult spermatogonia confer growth/survival advantage to the mutant

cells leading to clonal expansion over time, a universal process that occurs in the testes of all men as they age [20]. As SpT is extremely

rare, the transition from selfish clone to SpT likely requires secondary mutagenic events such as whole-chromosome aneuploidy. Moreover,

we speculate that infancy and/or early puberty may also constitute a period of susceptibility to the development of SpTs, through a block in

the mitosis-meoisis transition caused by specific whole chromosome imbalance.

https://doi.org/10.1371/journal.pone.0178169.g005
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Our targeted screening approach in the present and previous studies has shown that a sub-

set of SpTs carries well-known driver mutations in FGFR3 [22], HRAS [22,23] and NRAS (Fig

1A). Strikingly, all mutation-positive samples were diagnosed at� 55 years. However, it is

unlikely that these oncogenic mutations are sufficient to cause SpTs on their own. Indeed, it

has been shown that these and similar mutations are associated with benign intratubular ‘self-

ish’ clonal expansions of spermatogonia that progressively accumulate in the testes of all men

as they age [20,24], while SpTs are very rare occurrences. Moreover, we have shown that most

selfish clones caused by strongly activating mutations are characterized by impaired spermato-

genesis and the absence of differentiating haploid gametes [24]; hence this developmental

block may constitute an early predisposing event in SpT tumorigenesis. Of the 11 SpTs in

which FGFR3/HRAS/NRASmutations have been identified so far, chromosomal copy number

information is available for only one tumor (SS2) from an 84 year old man [23]. Interestingly,

similar to the five cases we studied by WGS, this tumor has been previously shown to exhibit

gains of chr9 and chr20 [27] (S2C Table), suggesting that a molecular mechanism via a specific

combination of the same non-random chromosomal aneuploidies may be responsible for the

rare transition from common benign intratubular spermatogonial clone to SpT (Fig 5B).

Unfortunately, because of the lack of good quality samples, we have not been able to assess the

chromosomal copy numbers of the other mutation-positive samples to test this hypothesis.

In summary, our findings highlight that SpT biology reflects the unique properties of the

male germline. Because of evolutionary constraints to maintain genomic integrity across gen-

erations, the male germline is refractory to the accumulation of de novo mutations. Neverthe-

less, SpTs may be exploiting a unique feature of the male germline, its ability to undergo both

mitosis and meiosis. We speculate that SpTs occur rarely because the oncogenic driver events

are caused by rare catastrophic instability involving specific combinations of whole-chromo-

some gains and losses. We propose that this oncogenic mechanism of altered gene expression

via whole-chromosome aneuploidies represents a rare vulnerability of the post-natal male

germline, which may be intimately linked to the failure to complete the process of mitosis-mei-

osis transition.

Material and methods

Samples

For WGS, tumor (SpT1, SpT3, SpT4, SpT6, SpT8) and matched normal (N1B, N4B, N6T,

N8T) samples were collected in the Netherlands and stored in liquid nitrogen prior to DNA

extraction. The use of tissue samples remaining after diagnosis for scientific reasons was

approved by the Medical Ethical Committee of the Erasmus MC Rotterdam (The Nether-

lands), (MEC 02.981). This included the permission to use the secondary tissue without further

consent. Samples were used according to the “Code for Proper Secondary Use of Human Tis-

sue in The Netherlands” developed by the Dutch Federation of Medical Scientific Societies

(FMWV (Version 2002, update 2011)). Tumors SpT1, SpT3 and SpT4 have been reported

before [15,27] and the diagnosis of SpT was performed by an experienced pathologist and sup-

ported by immunohistochemistry. Of note, the 48 year old patient diagnosed with SpT4, had

another tumor (H6T (S1 Table)) in the contralateral testis (i.e. bilateral case) that was not

WGS sequenced; based on dideoxy-sequencing, none of the non-synonymous variants identi-

fied in SpT4 were present in the H6T contralateral tumour. DNA was extracted from frozen

tumor tissue at the same time as the matched control samples consisting of either blood (N1B;

N4B) or pathologically normal testicular tissue adjacent to the tumor (N6T; N8T). The major-

ity of the formalin-fixed paraffin embedded (FFPE) tumor samples have been described previ-

ously (S1 Table), and the six new samples were collected in the Netherlands (SS_46, SS_49,
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SS_50, SS_51 and SS_53) or Denmark (SS_14) and were processed following the same stan-

dard protocol [22,23].

Whole-genome sequencing and quality control

Whole-Genome sequencing was performed as part of the WGS500 consortium. Sequencing

library preparation and Illumina sequencing, quality control and read mapping strategies are

described in [64]. Sequencing was performed on the Illumina HiSeq 2000 by the Oxford Geno-

mics Centre at the Wellcome Trust Centre for Human Genetics. We generated 100-bp reads

using v2.5 sequencing chemistry with a minimum of 1.5 billion reads (52x) for the tumors and

796 million reads (26x) for the matched control samples. Quality control of the sequencing

data was performed using FastQC [65] and read mapping was performed using Stampy

v1.0.12–1.0.13 [66].

Variant calling and quality control

Acquired single nucleotide variants (SNVs), small insertions/deletions (indels) and multiple

nucleotide variants (MNVs) were detected using two algorithms. Platypus v0.8.1 [29] uses a local

realignment and assembly algorithm to accurately identify SNVs and short indels. We first iden-

tified mutations by jointly calling each tumor sample with its matched normal sample. The

resulting set of variants was further processed using a likelihood model that computes a posterior

probability for each somatic variant (scripts provided on the Platypus GitHub repository https://

github.com/andyrimmer/Platypus/blob/master/scripts/findSomaticMutationsInTumour.py).

Variants with a posterior probability> 1 (Phred-scale) were retained. We also performed variant

calling using MuTect2 v1.1.6 [30], a somatic SNP and indel caller that is part of Genome Analysis

Toolkit (GATK) 3.5–0. Mutect2 relies on a Bayesian classifier method to detect somatic muta-

tions with very low allele fractions and utilizes tuned filters to ensure high specificity. We used

the default settings of the algorithm and retained the variants flagged as “PASS”. Variants that

were identified by both algorithms were prioritized for further analysis. Variants were annotated

using ANNOVAR [67] with respect to RefSeq genes.

Germline variants

Germline variants present in matched normal samples were called using Platypus v0.8.1 [29]

and annotated using ANNOVAR [67]. We identified 1330 non-synonymous SNVs and indels

that were common across all samples. Out of these only 2 SNVs and 1 indel had a population

frequency< 1% based on 1000 Genomes populations and the Exome Aggregation Consortium

(ExAC) release (v0.3) databases. Manual inspection of these three calls on IGV (Integrative

Genomics Viewer) showed that they were false positives.

Detection of structural variation, chromosome copy number and ploidy

levels

We used Samtools [68] to extract the read depth in base positions that correspond to one mil-

lion SNP markers typed by the Illumina Human 1M array. A ratio between the tumor and nor-

mal read depth was calculated at every SNP position. A moving average of read depth was

calculated using a window of 500 SNPs. Using the read counts of every base in each SNP posi-

tion, we calculated the B allele frequency (BAF) defined as the proportion of allele-specific

read counts of each SNP. Manual inspection of both read depth ratio and BAF was initially

used to infer the whole-chromosome alterations. These large-scale copy number alterations

and loss of heterozygosity were confirmed using OncoSNP-SEQ [28], a statistical model-based
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approach for inferring copy number profiles directly from high-coverage whole-genome

sequencing data. To reduce false positives, only OncoSNP-SEQ calls obtained for more than

1500 SNP-probes were considered. Using this algorithm, the tumor purity (contamination by

normal cells) and ploidy level (average number of reads for a unit copy number change—i.e.,

the haploid coverage) could be inferred for each tumor. Contamination was shown to be mini-

mal for most tumors, except for SpT8 that exhibited an estimated 15–20% wild-type contami-

nation. Furthermore, to study structural variation at a gene-by-gene level, for each tumor

sample and its paired normal control, we extracted the average read coverage for each exon of

every RefSeq gene in the human genome (hg19). We calculated the ratio of tumor vs. normal

read depth for each exon and extracted all exons showing deviation from the expected ratio,

that is, corresponding to more than one unit haploid copy number change. The software FAC-

TERA [69] with the default settings was used to detect gene fusions and structural variants

including deletion, duplication, inversion and translocation. Circos plots that included tracks

showing the read depth and BAF were created using modified functions from the R package

RCircos [70].

Statistical analysis of data

A permutation test was used to assess the significance of recurrent chromosome gains (or

losses). We performed 100,000 permutations of autosome copy numbers and calculated the

empirical p-values by counting the number of times the sum of copy numbers for each chro-

mosome exceeded (or was below) that of the observed sum. One copy number per chromo-

some was used for this analysis; in the case of chromosomes with specific arm amplifications,

only the copy number of the whole-chromosomes was used. The P-values were adjusted for

multiple testing using the Benjamini-Hochberg correction method. To characterize the variant

allele frequencies (VAFs) for each tumor within each chromosome region, we calculated the

50th (median), 90th and 99th percentiles of the VAF distribution.

SpT mutational spectrum and signatures of germline de novo mutations

To derive the mutational spectra of SNVs, we classified all mutations based on the reference

and mutant alleles found at each SNV site and further stratified them based on their tri-nucleo-

tide context. The SNVs were initially classified based on the following substitutions: C:G>A:T,

C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G, and T:A>G:C. These were further refined by

including the sequence context of each mutated base (5’ and 3’ of the mutated base), resulting

in 96 mutation types. We created a high-confidence set of germline de novo mutations

(DNMs) from four studies [40,41,42,43]. For the dataset from [42], we only included DNMs

called by both callers as defined in the study. Furthermore in the lower panel of Fig 3C, we

included all paternally-originating DNMs phased in [43]. The mutational spectra were derived

for all DNMs as described above.

Methylation data

Reduced-representation bisulfite sequencing (RRBS) methylation data were downloaded from

the UCSC server (ENCODE [39] for three samples: BC_Testis_N30 (testis of a 41-year-old

Asian donor), GM12878 (B lymphocytes cell line from a European Caucasian donor) and

H1-hESC (embryonic stem cell line). Only sites common to the replicate datasets were

included in the analysis, consisting of a total of 1,151,596 sites for BC_Testis_N30, 1,048,775

sites for GM12878 and 1,118,911 sites in H1-hESC. For each ENCODE sample, sites for which

more than 50% of the reads were methylated in both replicates were considered to be methyl-

ated and those below this threshold, to be unmethylated. Locations of the ENCODE sites were
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compared with the genomic positions of the SpT variant calls. We computed binomial P-val-

ues as Bin(q, n, p), where q is the number of methylated SpT variants, n is the total number of

SpT calls for which methylation data were available and p is the proportion of sites that were

methylated in the ENCODE data set.

SNV validation and SpT resequencing

For validation by dideoxy-sequencing, we used the Primer3 software [71] to design primers

specific for the region to amplify by PCR; each primer was tailed with a common sequence

(CS1 or CS2) that was used for sequencing (S6B Table). For SpT resequencing, 68 single mole-

cule molecular inversion probes (MIPs) were designed to target 145 selfish mutation hotspots

in FGFR2, FGFR3, HRAS, KRAS, NRAS, PTPN11 and RET using the MIPGEN algorithm [72]

(S6A Table). The MIP protocol is as in described in [73] with some minor modifications. After

an initial assessment of the capture yield of each MIP, the probes were divided into pools of 44

(Pool 1 –high performer) and 24 (Pool 2—low performer) and phosphorylated using T4 Poly-

nucleotide Kinase (NEB) (0.4 U per μl of 100μM MIPs) at 37˚C for 45 min, followed by heat

inactivation at 65˚C for 20 min. 200 ng of sample gDNA was incubated with each MIP pool, at

a 4000:1 molar ratio of MIPs:DNA, and samples were denatured for 10 min at 95˚C, followed

by 24 hr incubation at 60˚C with 3.2 U polymerase (Hemo Klentaq (NEB)) and 1U ligase

(Ampligase (Epicentre)). Template DNA and unbound MIPs were removed by incubating with

1 U exonuclease I (NEB) and 5 U exonuclease III (NEB) for 45 min, followed by heat inactiva-

tion at 95˚C for 2 min. Circularized MIPs with captured regions were amplified and barcoded

by PCR using primers targeting consensus sequences on the MIP backbone (S6B Table). Bar-

coded products from Pools 1 and 2 were combined, gel extracted and sequenced on Ion PGM

314 or 316 chips (Life Technologies). Variants at the 145 mutational hotspots with a minimum

frequency> 0.1 and minimum coverage of 20x were called using Ion Torrent variantCaller

(v4.2.1.0). Manual inspection was also performed for 45 hotspots, where overlapping reads

from the ligation or extension arms of MIPs targeting the alternative strand may have affected

the apparent variant frequency. Two regions in NRAS (p.G12/13 and p.Q61) and one in KRAS
(p.G12/G13) and in FGFR3 (p.A265-p.Y278) were poorly covered in some samples and were

subsequently amplified by PCR and dideoxy-sequenced. Overall, 80.2% (range 38.1%–91.2%) of

target codons were covered in all samples (S6C Table). Variants in WGS samples and MIP-

screened samples were validated by PCR amplification and dideoxy-sequencing (S6B Table).

Supporting information

S1 Fig. Identification of an NRAS c.182A>G (p.Q61R) mutation in two spermatocytic

tumor samples. (A) Heterozygous NRAS c.182A>G (p.Q61R) mutations in samples SS8 (age

86) and H8T-1 (age 55) identified in the MIP screen, visualised in IGV. (B) Variant validation

by PCR amplification and dideoxy-sequencing. The NRAS c.182A>G mutations were vali-

dated in both SS8 and H8T-1. The mutation was also present in an additional biopsy (H8T-2)

from the same tumour as H8T1. The red boxes represent the frame of the codon affected and

arrows indicate the presence of a mutant ‘G’ peak. The mutation was not detected in control

(ctrl) DNA.

(PDF)

S2 Fig. Circos plot of SpT3. The first (outer) circle represents chromosomal copy numbers

(inferred from relative sequencing depth); color indicates chromosomal copy numbers as

described in key; the second ring shows the relative allele frequency of the minor (B-allele) for

one million common SNPs; the third ring indicates chromosome number and locations. The
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tumor name and ploidy number are indicated in the middle.

(PDF)

S3 Fig. Gain of chr9 arms in SpT4 and SpT6. (A) Relative sequencing read coverage depth of

SpT4 to matched normal sample N4B. SpT4 is near-diploid (see Fig 2), but chr9 is mainly pres-

ent in 3 copies, with regions of the tip of chr9p present at 4 and 5 copies. This sub-amplified

region of chr9p tip contains DMRT1, a key regulator of mitosis-meiosis transition (breakpoint

locations are given in S2 Table). (B) Relative sequencing read coverage depth of SpT6 to

matched normal sample N6T. SpT6 is near- triploid (see Fig 2), but chr9 is mainly present at 4

copies, with the tip of chr9q present at 5 copies. This sub-amplified region contains the known

SOHLH1, a regulator of spermatogonial differentiation (breakpoint locations are given in S2

Table).

(PDF)

S1 Table. List of SpT samples analysed in the present study, including multiple identifiers

(ID) used in previous studies and targeted sequencing results.

(PDF)

S2 Table. Chromosome Copy number variation and breakpoints of SpT samples.

(XLSX)

S3 Table. SNVs and indels calls.

(XLSX)

S4 Table. Percentiles of Variant Allele frequencies (VAFs) of WGS spermatocytic semi-

noma samples binned by chromosomal regions estimated by OncoSNP-SEQ.

(XLSX)

S5 Table. Summary of the ENCODE methylation dataset for 3 tissue samples and compari-

son with SpT mutations.

(PDF)

S6 Table. Molecular inversion probe design, amplification primers, and target coverage

analysis.

(XLSX)
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