348 research outputs found

    CSTI Earth-to-orbit propulsion research and technology program overview

    Get PDF
    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification

    SPARCS: Stream-processing architecture applied in real-time cyber-physical security

    Get PDF
    In this paper, we showcase a complete, end-To-end, fault tolerant, bandwidth and latency optimized architecture for real time utilization of data from multiple sources that allows the collection, transport, storage, processing, and display of both raw data and analytics. This architecture can be applied for a wide variety of applications ranging from automation/control to monitoring and security. We propose a practical, hierarchical design that allows easy addition and reconfiguration of software and hardware components, while utilizing local processing of data at sensor or field site ('fog computing') level to reduce latency and upstream bandwidth requirements. The system supports multiple fail-safe mechanisms to guarantee the delivery of sensor data. We describe the application of this architecture to cyber-physical security (CPS) by supporting security monitoring of an electric distribution grid, through the collection and analysis of distribution-grid level phasor measurement unit (PMU) data, as well as Supervisory Control And Data Acquisition (SCADA) communication in the control area network

    Different boron compounds elicit similar responses in Coptotermes formosanus (Isoptera : rhinotermitidae)

    Get PDF

    Pitting of Space Shuttle's Inconel Honeycomb Conical Seal Panel

    Get PDF
    This paper describes the approach, findings, conclusions and recommendations associated with the investigation of the conical seal pitting. It documents the cause and contributing factors of the pitting, the means used to isolate each contributor, and the supporting evidence for the primary cause of the pitting. Finally, the selection, development and verification of the repair procedure used to restore the conical seal panel is described with supporting process and metallurgical rationale for selection

    On the noise-induced passage through an unstable periodic orbit II: General case

    Full text link
    Consider a dynamical system given by a planar differential equation, which exhibits an unstable periodic orbit surrounding a stable periodic orbit. It is known that under random perturbations, the distribution of locations where the system's first exit from the interior of the unstable orbit occurs, typically displays the phenomenon of cycling: The distribution of first-exit locations is translated along the unstable periodic orbit proportionally to the logarithm of the noise intensity as the noise intensity goes to zero. We show that for a large class of such systems, the cycling profile is given, up to a model-dependent change of coordinates, by a universal function given by a periodicised Gumbel distribution. Our techniques combine action-functional or large-deviation results with properties of random Poincar\'e maps described by continuous-space discrete-time Markov chains.Comment: 44 pages, 4 figure

    Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behaviour

    Full text link
    We consider the dynamics of a periodic chain of N coupled overdamped particles under the influence of noise, in the limit of large N. Each particle is subjected to a bistable local potential, to a linear coupling with its nearest neighbours, and to an independent source of white noise. For strong coupling (of the order N^2), the system synchronises, in the sense that all oscillators assume almost the same position in their respective local potential most of the time. In a previous paper, we showed that the transition from strong to weak coupling involves a sequence of symmetry-breaking bifurcations of the system's stationary configurations, and analysed in particular the behaviour for coupling intensities slightly below the synchronisation threshold, for arbitrary N. Here we describe the behaviour for any positive coupling intensity \gamma of order N^2, provided the particle number N is sufficiently large (as a function of \gamma/N^2). In particular, we determine the transition time between synchronised states, as well as the shape of the "critical droplet", to leading order in 1/N. Our techniques involve the control of the exact number of periodic orbits of a near-integrable twist map, allowing us to give a detailed description of the system's potential landscape, in which the metastable behaviour is encoded

    The effect of additive noise on dynamical hysteresis

    Get PDF
    We investigate the properties of hysteresis cycles produced by a one-dimensional, periodically forced Langevin equation. We show that depending on amplitude and frequency of the forcing and on noise intensity, there are three qualitatively different types of hysteresis cycles. Below a critical noise intensity, the random area enclosed by hysteresis cycles is concentrated near the deterministic area, which is different for small and large driving amplitude. Above this threshold, the area of typical hysteresis cycles depends, to leading order, only on the noise intensity. In all three regimes, we derive mathematically rigorous estimates for expectation, variance, and the probability of deviations of the hysteresis area from its typical value.Comment: 30 pages, 5 figure

    Pitting and Repair of the Space Shuttle's Inconel(Registered TradeMark) Honeycomb Conical Seal Panel

    Get PDF
    During return to flight servicing of the rudder speed brake (RSB) for each Space Shuttle Orbiter, inspectors discovered numerous small pits on the surface of the #4 right hand side honeycomb panel that covers the rudder speed brake actuators. Shortly after detection of the problem, concurrent investigations were initiated to determine the extent of damage, the root cause, and to develop a repair plan, since fabrication of a replacement panel is impractical for cost, schedule, and sourcing considerations. This paper describes the approach, findings, conclusions and recommendations associated with the investigation of the conical seal pitting. It documents the cause and contributing factors of the pitting, the means used to isolate each contributor, and the supporting evidence for the primary cause of the pitting. Finally, the selection, development and verification of the repair procedure used to restore the conical seal panel is described with supporting process and metallurgical rationale for selection

    Universality of residence-time distributions in non-adiabatic stochastic resonance

    Get PDF
    We present mathematically rigorous expressions for the residence-time and first-passage-time distributions of a periodically forced Brownian particle in a bistable potential. For a broad range of forcing frequencies and amplitudes, the distributions are close to periodically modulated exponential ones. Remarkably, the periodic modulations are governed by universal functions, depending on a single parameter related to the forcing period. The behaviour of the distributions and their moments is analysed, in particular in the low- and high-frequency limits.Comment: 8 pages, 1 figure New version includes distinction between first-passage-time and residence-time distribution
    corecore