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Universality of residence-time distributions

in non-adiabatic stochastic resonance
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1(�) and Barbara Gentz

2(��)
1 Centre de Physique Th�eorique (���), CNRS Luminy
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2 Weierstrass Institute for Applied Analysis and Stochastics

Mohrenstr. 39, 10117 Berlin, Germany

PACS. 02.50.Ey { Stochastic processes.
PACS. 05.10.Gg { Stochastic analysis methods (Fokker{Planck, Langevin, etc.).

PACS. 05.40.-a { Fluctuation phenomena, random processes, noise, and Brownian motion.

Abstract. { We present a mathematically rigorous expression for the residence-time distri-

bution of a periodically forced Brownian particle in a bistable potential. For a broad range

of forcing frequencies and amplitudes, the distribution is close to a periodically modulated

exponential one. Remarkably, the periodic modulation is governed by a universal function, de-

pending on a single parameter related to the forcing period. The behaviour of the distribution

and its moments is analysed, in particular in the low- and high-frequency limits.

Date. August 13, 2004.

Keywords and phrases. Stochastic resonance, residence-time distribution, noise-induced exit,

oscillating barrier, periodic driving, activated escape, metastability, cycling.

The ampli�cation by noise of a weak periodic signal acting on a multistable system is known
as stochastic resonance (SR). A simple example of a system showing SR is an overdamped
Brownian particle in a symmetric double-well potential, subjected to deterministic periodic
forcing as well as white noise. Despite of the amplitude of the forcing being too small to
enable the particle to switch from one potential well to the other, such transitions can be
made possible by the additive noise. For suÆciently large noise intensity, depending on the
forcing period, the transitions between potential wells can become close to periodic. This
mechanism was originally proposed by Benzi et al. and Nicolis and Nicolis [1{3] in order to
o�er an explanation for the close-to-periodic occurence of the major Ice Ages. Since then,
it has been observed in a large variety of physical and biological systems (for reviews see,
e.g., [4{7]).

Although much progress has been made in the quantitative description of the phenomenon
of SR, many of its aspects are not yet fully understood. Mathematically rigorous results have
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so far been limited to the regimes of exponentially slow forcing [8, 9], or moderately slow
forcing of close-to-threshold amplitude [10,11].

One of the measures introduced in order to quantify SR is the residence-time distribu-
tion, that is, the distribution of the random time spans the Brownian particle spends in each
potential well between transitions. SR is characterized by the fact that residence times are
more likely to be close to multiples of the forcing period (plus a phase shift) than not. The
residence-time distribution was �rst studied by Eckmann and Thomas for a two-level sys-
tem [12]. For continuous systems, it has been estimated, in the case of adiabatic forcing, by
averaging the escape rate for frozen potential over the distribution of jump phases [13,14].

For larger forcing frequencies, however, the adiabatic approximation can no longer be used.
An alternative approach is to consider time as an additional dynamic variable, which yields a
two-dimensional problem. In the absence of noise, the system has two stable periodic orbits,
one oscillating around each potential well, and one unstable periodic orbit, which oscillates
around the saddle and separates the basins of attraction of the two stable orbits. Determining
the residence-time distribution is equivalent to �nding the distribution of �rst passages of the
stochastic process through the unstable orbit. This problem was �rst investigated by Graham
and T�el [15,16] and Day [17{19], and later by Maier and Stein [20] and others (e.g., [21,22]).

At �rst glance, however, this two-dimensional approach seems to produce a paradoxi-
cal result. Indeed, it is known from the classical Wentzell{Freidlin theory [23{25] that the
distribution of �rst-passage locations through a periodic orbit looks uniform on the level of
exponential asymptotics [17]. This is due to the fact that translations along the periodic orbit
do not contribute to the cost in terms of action functional. How can this fact be conciled with
the quasistatic picture, which yields residence times concentrated near multiples of the forcing
period? Obviously, the answer has to lie in the subexponential behaviour of the distribution
of transitions.

In this Letter, we extend previous results of [19{21] to a mathematically rigorous expression
for the residence-time distribution up to multiplicative errors in the subexponential prefactor,
valid for a broad range of forcing periods [26, 27]. A particularly interesting aspect of the

result is that the residence-time distribution is governed by a universal periodic function,
depending only on the period of the unstable periodic orbit times its Lyapunov exponent. All
the model-dependent properties of the distribution can be eliminated by a deterministic time
change.

Assumptions. { We consider one-dimensional stochastic di�erential equations of the form

dxt = �

@

@x
V (xt; t)dt+ �dWt; (1)

where Wt is a standard Wiener process, describing white noise, and the small parameter
� measures the noise intensity (the di�usion constant being D = �

2
=2). The double-well

potential V (x; t) depends periodically on time, with period T . The simplest example is

V (x; t) =
1

4
x
4
�

1

2
x
2
�A sin(!t)x; (2)

where the forcing has angular frequency ! = 2�=T and amplitude jAj <
p
4=27.

Our results apply to a general class of T -periodic double-well potentials. We assume that
for each �xed t, V (x; t) has two minima at Xs

1;2(t) and a saddle at Xu(t), such that

X
s

1
(t) < c1 < X

u(t) < c2 < X
s

2
(t) 8t (3)
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for two constants c1; c2 (in the particular case of the potential (2), one can take c2 = �c1 =
1=
p
3). Then it is straightforward to show, using Poincar�e maps, that in the absence of noise

the system (1) has exactly three periodic orbits, one of them unstable and staying between c1

and c2, which we denote by x
per(t). We introduce the notations

a(t) = �
@
2

@x2
V (xper(t); t) (4)

for the curvature of the potential at xper(t), and

� =
1

T

Z T

0

a(t) dt (5)

for the Lyapunov exponent of the unstable orbit. We assume that � is of order 1, but T can
become comparable to Kramers' time.

Finally, we need a non-degeneracy assumption for the system, which assures that the
action functional is minimized on a discrete set of paths, and excludes symmetries other than
time-periodicity [26]. In particular, it should not be possible to transform the equation into an
autonomous one by a time-periodic change of variables. In the special case of the potential (2),
this condition is met when A 6= 0. In addition, we will assume that jAj is of order 1, while
�
2 � jAj.

Results. { Assume the system starts at time 0 in a given initial point at or near the
bottom of the left-hand potential well. We shall call residence time the (random) �rst time
� at which xt reaches the unstable periodic orbit xper(t). One should note that once x

per(t)
has been reached, the process still needs some time to relax to one of the potential wells; this
time is short compared to the period in the adiabatic case, but can be signi�cant for larger
forcing frequencies.

Our main result states that the probability distribution of � is governed by the following
function, in a sense made precise in Theorem 1 below. Let

p(t) =
1

N
Q�T

�
�(t) � j ln�j

� �
0(t)

�TK(�)
e��(t)=�TK(�) ftrans(t) (6)

where we use the following notations:

� TK(�) is the analogue of Kramers' time in the autonomous case; it has the form

TK(�) =
C

�
eV =�

2

; (7)

where V is the constant value of the quasipotential on x
per(t). V can be computed by a

variationalmethod, as the minimumof the action functional over all paths connecting the
bottom of the left-hand potential well to x

per(t) (see [25]). In the limit of small forcing
amplitude, V reduces to twice the potential barrier height. The prefactor has order ��1

rather than 1, due to the fact that most paths reach x
per(t) through a bottleneck of

width � (the width would be larger if jAj were not of order 1 [28]).

� Q�T (y) is the announced universal periodic function, of period �T ; it has the explicit
expression

Q�T (y) = 2�T

1X
k=�1

A(y � k�T ) with A(z) =
1

2
e�2z exp

n
�
1

2
e�2z

o
; (8)
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and thus consists of a superposition of identical asymmetric peaks, shifted by a distance
�T . The average of Q�T (y) over one period is equal to 1.

� �(t) contains the model-dependent part of the distribution; it is an increasing function
of t, satisfying �(t + T ) = �(t) + �T , and is given by

�(t) = const +

Z
t

0

a(s) ds � 1

2
ln

v(t)

v(0)
; (9)

where v(t) is the unique periodic solution of the di�erential equation _v(t) = 2a(t)v(t)+1.
It is related to the variance of Eq. (1) linearized around xper(t), and has the expression

v(t) =
1

e2�T �1

Z
t+T

t

exp

�Z
t+T

s

2a(u) du

�
ds: (10)

� ftrans(t) accounts for the initial transient behaviour of the system; it is an increasing
function satisfying

ftrans(t) =

8>>><
>>>:

O
�
exp

�
� L

�2
e��t

1� e�2�t

��
for �t < 2j ln�j

1� O
�
e��t

�2

�
for �t > 2j ln�j

(11)

for some constant L, and thus behaves roughly like expf�L e��(t) =�2(1 � e�2�(t))g.
However, ftrans(t) can be di�erent when starting with an initial distribution that is not
concentrated in a single point near the bottom of the potential well.

� N is the normalization, which we compute below.

The precise formulation of our result is the following:

Theorem 1. For any � >
p
�, and all times t > 0,

P
�
� 2 [t; t+�]

	
=

Z t+�

t

p(s) ds [1 + r(�)]; (12)

where r(�) = O(
p
�).

If it were not for the limitation on �, which is due to technical reasons, this result would
show that the probability density of � is given by p(t)[1 + r(�)]. We expect the remainder to
be of order � rather than

p
�. This result has been derived in [26] in the simpli�ed setting of

a piecewise quadratic potential, with explicit values for V and C, r(�) = �, and no restriction
on �. A full proof for the general case will be given in [27].

The main idea behind the proof is that sample paths reaching xper(t), say, during a time
interval [t; t + �] � [nT; (n + 1)T ], are concentrated in a neighbourhood of n deterministic
paths, the most probable exit paths, or MPEPs. Each of these paths contributes to the
probability (12). The kth term of the sum (8) is the contribution of a MPEP remaining inside
the left-hand well for n � k periods, and then idling along xper(t) during the remaining k

periods (extending the sum from k 2 f0; : : : ; n� 1g to Zonly results in an error of order �).
The special form of the sum (8), involving double-exponentials, has been previously noted
in [18,20] and [21].



N. Berglund and B. Gentz: Residence times for stochastic resonance 5

(a) (b)

(c) (d)

Fig. 1 { Plots of the residence-time distribution p(t) (full curve) for various parameter values. The

broken curve is proportional to the average density (14), but scaled to match the peak height in order

to guide the eye. The x-axis comprises 8 periods on each plot; the vertical scale is not respected

between plots. Parameter values are V = 0:5, � = 1 and (a) � = 0:4 (i.e., D = 0:08), T = 2,

(b) � = 0:4, T = 20, (c) � = 0:5 (i.e., D = 0:125), T = 2 and (d) � = 0:5, T = 5.

Discussion. { Let us now analyse the expression (6) in more detail.

Taking �(t)=� as new time variable eliminates the factor �0(t)=� in the density. Thus
�(t)=� can be considered as a natural parametrization of time, in which one has to measure the
residence-time distribution in order to reveal its universal character. We may thus henceforth
assume that �(t) = �t.

The universal periodic function Q�T depends only on the single parameter �T . For large
�T , it consists of well-separated asymmetric peaks, while for decreasing �T these peaks overlap

more and more and Q�T (y) becomes 
atter. In fact, one can easily compute the Fourier series
of Q�T , which reads

Q�T (y) =
X
q2Z

2�iq=�T�

�
1 +

�iq

�T

�
e2�iqy=�T : (13)

Since the Euler Gamma function � decreases exponentially fast as a function of the imaginary
part of its argument,Q�T (y) is close, for small �T , to a sinuso��d of mean value 1 and amplitude
exponentially small in 1=2�T .

The remarkable fact that j ln�j enters in the argument of Q�T has been discovered, to our
best knowledge, by Day, who termed it cycling [18, 19]. It means that as � decreases, the
peaks of the residence-time distribution are translated along the time-axis, proportionally to
j ln�j. See also [20] for an interpretation of this phenomenon in terms of MPEPs.

The remaining, non-periodic time-dependence of (6) corresponds to an averaged density,
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and behaves roughly like

exp

�
�

L

�2
e
��t

1� e�2�t
�

t

TK(�)

�
: (14)

This function grows from 0 to almost 1 in a time of order 2j ln�j=�, and then slowly decays

on the scale of the Kramers time TK(�). It is maximal for �t ' V =�2.

The residence-time distribution is thus in e�ect controlled by two parameters: the quantity

�T , measuring the instability of the saddle, which determines the shape of the distribution

within a period; and the Kramers time, which governs the decay of the average density (14).

For small T=TK(�), the residence-time distribution consists of many peaks whose height

decreases only slowly on the time scale TK(�). Fig. 1 shows residence-time distributions for

relatively large noise intensities, in order to make the decay more apparent. Increasing the

period for constant noise intensity has two e�ects (Fig. 1 (a) and (b)): the peaks become

narrower relatively to the period, while their height decreases faster. When T increases

beyond TK(�), the distribution becomes dominated by a single peak, and one enters the

synchronization regime, with the particle switching wells twice per period. Increasing the

noise intensity for constant period (Fig. 1 (a) and (c)) also produces a faster decay of the

peaks, while at the same time the peak's location is shifted due to the cycling phenomenon.

Fig. 1 (b) and (d) correspond to the same value of T=TK(�), but in (d) a larger noise intensity

is responsible for broader peaks.

Moments of the residence-time distribution can easily be computed up to a correction

stemming from r(�) (the correction due to ftrans(t) is of smaller order). Using the Fourier

series (13), one �nds (for �(t) = �t)

Ef�ng =
1

N
n!TK(�)

n

�
1 + 2Re

X
q>1

(2�2)�iq=�T

(1� 2�iqTK(�)=T )n+1
�

�
1 +

�iq

�T

���
1 + O(r(�))

�
: (15)

In particular, taking n = 0 yields the normalization N . One easily sees that

lim
�!0

�2 logEf�g = V ; (16)

in accordance with the classical Wentzell{Freidlin theory.

Two other limits are of particular interest. For �T � 1, the decay properties of �(1 + ix)

imply

Ef�ng = n!TK(�)
n
�
1 +O(e

��2=2�T
) + O(r(�))

�
; (17)

which is close to the moments of an exponential distribution with expectation TK(�). This is

natural since the periodic modulation becomes 
at in this limit. However, it is also true that

for T � TK(�),

Ef�ng = n!TK(�)
n
�
1 +O(T=TK(�)) +O(r(�))

�
; (18)

independently of the value of �T . This is due to the fact that the period of modulation is short

with respect to the scale of exponential decay. The moments of the residence-time distribution

can thus di�er signi�cantly from those of an exponential distribution only when T is not too

small compared to both ��1 and TK(�).

A third limit in which the residence-time distribution should approach an exponential one

is the limit of vanishing forcing amplitude A (for the particular case of the potential (2)).

However, the expression (6) does not hold in cases where A is not large compared to �2,

because it makes use of the saddle-point method in the vicinity of MPEPs. An asymptotic

expression for A� �2 has been proposed in [13,14].
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Conclusion. { The most important aspect of our rigorous expression for the residence-
time distribution is the fact that it is governed essentially by two dimensionless parameters,
�T and T=TK(�), which can be modi�ed independently. The ratio T=TK(�) between period
and Kramers time appears in most quantitative measures of SR, which indicate an optimal

ampli�cation when T is close to 2TK(�). In this regime, the probability of transitions be-
tween potential wells becomes signi�cant during each period. The parameter �T , by contrast,
controls the concentration of residence times within each period, i.e., the phase of transition
times. Large values of �T yield a sharply peaked residence-time distribution, regardless of the
peak's relative height.
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