39 research outputs found

    From the inside out: Interoceptive feedback facilitates the integration of visceral signals for efficient sensory processing

    Get PDF
    Neuroscientific studies have mainly focused on the way humans perceive and interact with the external world. Recent work in the interoceptive domain indicates that the brain predictively models information from inside the body such as the heartbeat and that the efficiency with which this is executed can have implications for exteroceptive processing. However, to date direct evidence underpinning these hypotheses is lacking. Here, we show how the brain predictively refines neural resources to process afferent cardiac feedback and uses these interoceptive cues to enable more efficient processing of external sensory information. Participants completed a repetition-suppression paradigm consisting of a neutral repeating face. During the first face presentation, they heard auditory feedback of their heartbeat which either coincided with the systole of the cardiac cycle, the time at which cardiac events are registered by the brain or the diastole during which the brain receives no internal cardiac feedback. We used electroencephalography to measure the heartbeat evoked potential (HEP) as well as auditory (AEP) and visual evoked potentials (VEP). Exteroceptive cardiac feedback which coincided with the systole produced significantly higher HEP amplitudes relative to feedback timed to the diastole. Elevation of the HEP in this condition was followed by significant suppression of the VEP in response to the repeated neutral face and a stepwise decrease of AEP amplitude to repeated heartbeat feedback. Our results hereby show that exteroceptive heartbeat feedback coinciding with interoceptive signals at systole enhanced interoceptive cardiac processing. Furthermore, the same cue facilitating interoceptive integration enabled efficient suppression of a visual stimulus, as well as repetition suppression of the AEP across successive auditory heartbeat feedback. Our findings provide evidence that the alignment of external to internal signals can enhance the efficiency of interoceptive processing and that cues facilitating this process in either domain have beneficial effects for internal as well as external sensory processing

    Exteroceptive expectations modulate interoceptive processing: repetition-suppression effects for visual and heartbeat evoked potentials

    Get PDF
    Interoception refers to the signaling of internal bodily commands. Here, we explore repetition suppression of intero- and exteroceptive neural markers to test whether the perception and predictability of exteroceptive stimulus material affects their expression. Participants completed a repetition suppression paradigm in which angry or neutral facial expressions repeated or alternated. Participants received either an implicit (experiment 1) or explicit (experiment 2) cue enabling the formation of expectations regarding the upcoming facial expression. We measured the heartbeat-evoked potential (HEP) indexing cardiac processing and visual evoked potentials (VEP) in response to viewing the second (repeated or alternated) face. Repeating angry facial expressions produced repetition suppression of both HEP and VEP amplitude while repeating neutral expressions led to repetition enhancement of HEP amplitude. This effect was magnified when participants were explicitly aware of predictive cues. Furthermore, repetition suppression of HEP amplitude correlated with neural attenuation of VEP activity. Results highlight repetition effects for interoceptive as well as exteroceptive neural markers and support top-down, expectation-based accounts of the phenomenon. Furthermore, results demonstrate that the perception of exteroceptive stimulus information has an effect on the processing of interoceptive signals and suggest a direct neural connection between the processing of external and internal sensory information

    The Interaction between Interoceptive and Action States within a Framework of Predictive Coding

    Get PDF
    The notion of predictive coding assumes that perception is an iterative process between prior knowledge and sensory feedback. To date, this perspective has been primarily applied to exteroceptive perception as well as action and its associated phenomenological experiences such as agency. More recently, this predictive, inferential framework has been theoretically extended to interoception. This idea postulates that subjective feeling states are generated by top-down inferences made about internal and external causes of interoceptive afferents. While the processing of motor signals for action control and the emergence of selfhood have been studied extensively, the contributions of interoceptive input and especially the potential interaction of motor and interoceptive signals remain largely unaddressed. Here, we argue for a specific functional relation between motor and interoceptive awareness. Specifically, we implicate interoceptive predictions in the generation of subjective motor-related feeling states. Furthermore, we propose a distinction between reflexive and pre-reflexive modes of agentic action control and suggest that interoceptive input may affect each differently. Finally, we advocate the necessity of continuous interoceptive input for conscious forms of agentic action control. We conclude by discussing further research contributions that would allow for a fuller understanding of the interaction between agency and interoceptive awareness

    Dissociable sources of erogeneity in social touch: Imagining and perceiving C-Tactile optimal touch in erogenous zones

    Get PDF
    Previous research points to two major hypotheses regarding the mechanisms by which touch can be experienced as erotogenic. The first concerns the body part to which touch is applied (erogenous zones) and the second the modality of touch (sensual touch optimal in activating C Tactile afferents). In this study, we explored for the first time the relation between those two mechanisms in actual and imagined social touch. In a first experiment, we randomly assigned "Giver" and "Receiver" roles within 19 romantic couples (20 females, 18 males, age 32.34 +/- 8.71SD years) and asked the Giver" to apply CT-optimal (3 cm/s) vs. CT-suboptimal (18 cm/s) touch on an erogenous (neck) vs. non-erogenous zone (forehead) of their partner. We then obtained ratings of pleasantness and sexual arousal from both "Receivers" and Givers". In a second experiment, 32 healthy females (age 25.16 +/- 5.91SD years) were asked to imagine CT-optimal vs. CT-suboptimal stimulation (stroking vs. patting) and velocity (3 cm/s vs. 18 cm/s) on different erogenous vs. non-erogenous zones and rate pleasantness. While both erogenous body part and CT-optimal, sensual touch were found to increase pleasant and erotic sensations, the results showed a lack of an interaction. Furthermore, pleasantness was induced by mere imagination of touch without any tactile stimulation, and touch that was sexually arousing for the receiver was rated as more sexually arousing for the giver as well, pointing to top-down, learned expectations of sensory pleasure and erogeneity. Taken together, these studies provide the first direct evidence that while both the body location to which touch is applied and the mode of touch contribute to pleasant and erotic sensations, these two factors appear to mediate subjective pleasantness and erogeneity by, at least partly, independent mechanisms

    Cardiac interoceptive learning is modulated by emotional valence perceived from facial expressions

    Get PDF
    Interoception refers to the processing of homeostatic bodily signals. Research demonstrates that interoceptive markers can be modulated via exteroceptive stimuli and suggests that the emotional content of this information may produce distinct interoceptive outcomes. Here, we explored the impact of differently valenced exteroceptive information on the processing of interoceptive signals. Participants completed a repetition-suppression paradigm viewing repeating or alternating faces. In experiment 1, faces wore either angry or pained expressions to explore the interoceptive response to different types of negative stimuli in the observer. In experiment 2, expressions were happy or sad to compare interoceptive processing of positive and negative information. We measured the heartbeat evoked potential (HEP) and visual evoked potentials (VEPs) as a respective marker of intero- and exteroceptive processing. We observed increased HEP amplitude to repeated sad and pained faces coupled with reduced HEP and VEP amplitude to repeated angry faces. No effects were observed for positive faces. However, we found a significant correlation between suppression of the HEP and VEP to repeating angry faces. Results highlight an effect of emotional expression on interoception and suggest an attentional trade-off between internal and external processing domains as a potential account of this phenomenon

    Sensitivity to CT-optimal, Affective Touch Depends on Adult Attachment Style

    Get PDF
    Affective touch supports affiliative bonds and social cognition. In particular, gentle, stroking touch, which has recently been associated with the C Tactile (CT) system, is typically perceived as pleasant and prosocial. However, it remains unknown whether pre-existing models of social relating influence the perception of CT-optimal touch. In this study (N = 44 adults), we examined how individual differences in attachment styles relate to the perception of CT-optimal touch, as well as to a different modality of interoception, namely heartbeat perception. Using the gold-standard assessment of attachment (Adult Attachment Interview), we found that insecure attachment was associated with reduced pleasantness discrimination between CT-optimal vs. non-CT optimal touch. Acknowledging the different traditions in measuring attachment, we also used a well-validated self-report questionnaire that pertains to explicit representations of current close relationships. Using this measure, we found that higher scores in attachment anxiety (but not attachment avoidance) were associated with reduced pleasantness discrimination between CT-optimal vs. non-CT optimal touch. Attachment patterns (in both measures) were not related to cardiac perception accuracy. These results corroborate and extend previous literature on CT-optimal touch and its relation with affiliative bonds and social cognition. Given that attachment was not related to perceived cardiac accuracy, these findings point to the specificity of the relationship between CT-optimal touch and attachment

    Lignin Preservation and Microbial Carbohydrate Metabolism in Permafrost Soils

    Get PDF
    Permafrost-affected soils in the northern circumpolar region store more than 1,000 Pg soil organic carbon (OC), and are strongly vulnerable to climatic warming. However, the extent to which changing soil environmental conditions with permafrost thaw affects different compounds of soil organic matter (OM) is poorly understood. Here, we assessed the fate of lignin and non-cellulosic carbohydrates in density fractionated soils (light fraction, LF vs. heavy fraction, HF) from three permafrost regions with decreasing continentality, expanding from east to west of northern Siberia (Cherskiy, Logata, Tazovskiy, respectively). In soils at the Tazovskiy site with thicker active layers, the LF showed smaller OC-normalized contents of lignin-derived phenols and plant-derived sugars and a decrease of these compounds with soil depth, while a constant or even increasing trend was observed in soils with shallower active layers (Cherskiy and Logata). Also in the HF, soils at the Tazovskiy site had smaller contents of OC-normalized lignin-derived phenols and plant-derived sugars along with more pronounced indicators of oxidative lignin decomposition and production of microbial-derived sugars. Active layer deepening, thus, likely favors the decomposition of lignin and plant-derived sugars, that is, lignocelluloses, by increasing water drainage and aeration. Our study suggests that climate-induced degradation of permafrost soils may promote carbon losses from lignin and associated polysaccharides by abolishing context-specific preservation mechanisms. However, relations of OC-based lignin-derived phenols and sugars in the HF with mineralogical properties suggest that future OM transformation and carbon losses will be modulated in addition by reactive soil minerals.publishedVersio

    Affective interoceptive inference: Evidence from heart-beat evoked brain potentials.

    Get PDF
    The perception of internal bodily signals (interoception) is central to many theories of emotion and embodied cognition. According to recent theoretical views, the sensory processing of visceral signals such as one's own heartbeat is determined by top-down predictions about the expected interoceptive state of the body (interoceptive inference). In this EEG study we examined neural responses to heartbeats following expected and unexpected emotional stimuli. We used a modified stimulus repetition task in which pairs of facial expressions were presented with repeating or alternating emotional content, and we manipulated the emotional valence and the likelihood of stimulus repetition. We found that affective predictions of external socially relevant information modulated the heartbeat-evoked potential, a marker of cardiac interoception. Crucially, the HEP changes highly relied on the expected emotional content of the facial expression. Thus, expected negative faces led to a decreased HEP amplitude, whereas such an effect was not observed after an expected neutral face. These results suggest that valence-specific affective predictions, and their uniquely associated predicted bodily sensory state, can reduce or amplify cardiac interoceptive responses. In addition, the affective repetition effects were dependent on repetition probability, highlighting the influence of top-down exteroceptive predictions on interoception. Our results are in line with recent models of interoception supporting the idea that predicted bodily states influence sensory processing of salient external information

    Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic

    Get PDF
    In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5 m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, 1.6 g cm−3), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 ± 8.0 kg m−2 (mean ± SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35 % was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19 % in mineral and 13 % in organic horizons). During fractionation, approximately 13 % of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 ± 8.1 kg m−2; all mineral B, C, and permafrost horizons). Approximately 22 % of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C / N ratios and high δ13C values indicated substantial microbial OM transformation in the subsoil, but this was not reflected in altered LF and HF pool sizes. Partial least-squares regression analyses suggest that OC accumulates in the HF fraction due to co-precipitation with multivalent cations (Al, Fe) and association with poorly crystalline iron oxides and clay minerals. Our data show that, across all permafrost pedons, the mineral-associated OM represents the dominant OM fraction, suggesting that the HF-OC is the OM pool in permafrost soils on which changing soil conditions will have the largest impact.Russian Ministry of Education and Science/14.B25.31.0031German Federal Ministry of Education and Research/03F0616AEvangelisches Studienwerk VilligstDF

    Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil

    Get PDF
    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate.Austrian Science Fund (FWF)/CryoCAR
    corecore