116 research outputs found

    GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically-varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially-varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by 1\sim 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S\'{e}rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to MNRAS; latest version has minor updates in presentation of 4 figures, no changes in content or conclusion

    Immunogenicity induced by the use of alternative vaccine platforms to deal with vaccine shortages in a low- to middle-income country: Results of two randomized clinical trials

    Get PDF
    Background: Shortages of component two of Sputnik V vaccine (rAd5) are delaying the possibility of achieving full immunisation. The immunogenic response associated with the use of alternative schemes to complete the scheme was not explored. Methods: We did two non-inferiority randomized clinical trials with outcomes measures blinded to investigators on adults aged 21–65 years, vaccinated with a single dose of rAd26 ≥ 30 days before screening and no history of SARS-CoV-2. Participants were assigned (1:1:1:1:1) to receive either rAd5; ChAdOx1; rAd26; mRNA-1273 or BBIBP-CorV. The primary endpoint was the geometric mean ratio (GMR) of SARS-CoV-2 anti-spike IgG concentration at 28 days after the second dose, when comparing rAd26/rAd5 with rAd26/ChAdOx1, rAd26/rAd26, rAd26/mRNAmRNA-1273 and rAd26/BBIBP-CorV. Serum neutralizing capacity was evaluated using wild type SARS-CoV-2 reference strain 2019 B.1. The safety outcome was 28-day rate of serious adverse. The primary analysis included all participants who received ≥ 1 dose. The studies were registered with NCT04962906 and NCT05027672. Both trials were conducted in Buenos Aires, Argentina. Findings: Between July 6 and August 3, 2021, 540 individuals (age 56·7 [SD 7·3]; 243 (45%) women) were randomly assigned to received rAd5 (n=150); ChAdOx1 (n=150); rAd26 (N=87); mRNAmRNA-1273 (n=87) or BBIBP-CorV (n=65). 524 participants completed the study. As compared with rAd26/rAd5 (1·00), the GMR (95%CI) at day 28 was 0·65 (0·51–0·84) among those who received ChAdOx1; 0·47 (0·34–0·66) in rAd5; 3·53 (2·68–4·65) in mRNA-1273 and 0·23 (0·16–0·33) in BBIBP-CorV. The geometric mean (IU/ml) from baseline to day 28 within each group increased significantly with ChAdOx1 (4·08 (3·07–5·43)); rAd26 (2·69 (1·76–4·11)); mRNA-1273 (21·98 (15·45–31·08)) but not in BBIBP-CorV (1·22 (0·80–1·87)). Interpretation: Except for mRNA-1273 which proved superior, in all other alternatives non-inferiority was rejected. Antibody concentration increased in all non-replicating viral vector and RNA platforms. Funding: The trials were supported (including funding, material support in the form of vaccines and testing supplies) by the Buenos Aires City Government.Fil: Macchia, Alejandro. No especifíca;Fil: Ferrante, Daniela. No especifíca;Fil: Bouzas, María Belén. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Angeleri, Patricia. No especifíca;Fil: Biscayart, Cristián. No especifíca;Fil: Geffner, Jorge Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Mammana, Lilia. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Zapiola, Inés. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: López, Eduardo Luis. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Varese, Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Mazzitelli, Ignacio Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Di Diego García, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Sharff, Deborah. No especifíca;Fil: Lucconi, Verónica. No especifíca;Fil: Sujansky, Paula. No especifíca;Fil: Mariani, Javier. No especifíca;Fil: González Bernaldo de Quirós, Fernán. No especifíca

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    The NANOGrav 12.5-Year Data Set:Dispersion Measure Misestimations with Varying Bandwidths

    Get PDF
    Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22 μs due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7 μs. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches

    Basic Atomic Physics

    Get PDF
    Contains reports on seven research projects.National Science Foundation (Grant PHY 87-06560)Joint Services Electronics Program (Contract DAAL03-86-K-0001)Joint Services Electronics Program (Contract DAAL03-89-C-0002)National Science Foundation (Grant PHY 86-05893)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1207

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Grant PHY 87-06560National Science Foundation Contract PHY 86-05893U.S. Army Research Office Contract DAAL03-89-K-0082U.S. Navy - Office of Naval Research Contract N00014-89-J-1207U.S. Navy - Office of Naval Research Contract N00014-83-K-069

    GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ∼1percent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticit

    Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays:Application to 3C 66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and emit low-frequency gravitational radiation in the process. In this paper, we consider the galaxy 3C 66B, which was used as the target of the first multimessenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational-wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C 66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C 66B to less than (1.65 ± 0.02) × 109 M o˙ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data over "blind"pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences

    The AURORA Study: A Longitudinal, Multimodal Library of Brain Biology and Function after Traumatic Stress Exposure

    Get PDF
    Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among civilian trauma survivors and military veterans. These APNS, as traditionally classified, include posttraumatic stress, postconcussion syndrome, depression, and regional or widespread pain. Traditional classifications have come to hamper scientific progress because they artificially fragment APNS into siloed, syndromic diagnoses unmoored to discrete components of brain functioning and studied in isolation. These limitations in classification and ontology slow the discovery of pathophysiologic mechanisms, biobehavioral markers, risk prediction tools, and preventive/treatment interventions. Progress in overcoming these limitations has been challenging because such progress would require studies that both evaluate a broad spectrum of posttraumatic sequelae (to overcome fragmentation) and also perform in-depth biobehavioral evaluation (to index sequelae to domains of brain function). This article summarizes the methods of the Advancing Understanding of RecOvery afteR traumA (AURORA) Study. AURORA conducts a large-scale (n = 5000 target sample) in-depth assessment of APNS development using a state-of-the-art battery of self-report, neurocognitive, physiologic, digital phenotyping, psychophysical, neuroimaging, and genomic assessments, beginning in the early aftermath of trauma and continuing for 1 year. The goals of AURORA are to achieve improved phenotypes, prediction tools, and understanding of molecular mechanisms to inform the future development and testing of preventive and treatment interventions
    corecore