114 research outputs found

    Preparation and Use of a General Solid-Phase Intermediate to Biomimetic Scaffolds and Peptide Condensations

    Get PDF
    The Distributed Drug Discovery (D3) program develops simple, powerful, and reproducible procedures to enable the distributed synthesis of large numbers of potential drugs for neglected diseases. The synthetic protocols are solid-phase based and inspired by published work. One promising article reported that many biomimetic molecules based on diverse scaffolds with three or more sites of variable substitution can be synthesized in one or two steps from a common key aldehyde intermediate. This intermediate was prepared by the ozonolysis of a precursor functionalized at two variable sites, restricting their presence in the subsequently formed scaffolds to ozone compatible functional groups. To broaden the scope of the groups available at one of these variable sites, we developed a synthetic route to an alternative, orthogonally protected key intermediate that allows the incorporation of ozone sensitive groups after the ozonolysis step. The utility of this orthogonally protected intermediate is demonstrated in the synthesis of several representative biomimetic scaffolds containing ozonolytically labile functional groups. It is compatible with traditional Fmoc peptide chemistry, permitting it to incorporate peptide fragments for use in fragment condensations with peptides containing cysteine at the N-terminus. Overall yields for its synthesis and utilization (as many as 13 steps) indicate good conversions at each step

    Elimination of TFA-Mediated Cleavage in Distributed Drug Discovery

    Get PDF
    Distributed Drug Discovery (D3) is a multi-disciplinary approach to the discovery of new drugs, which target neglected diseases or conditions common to developing-world countries. As part of a continuing effort to improve D3 methodology, two approaches for eliminating the final step TFA-mediated resin cleavage are proposed for investigation. Cleavage under basic conditions (saponification) and mild acid conditions (dilute HCl/hexafluoroisopropanol or dilute HCl/trifluoroethanol) represent improvements in safety and convenience to the undergraduate student researcher. Previous studies have shown that saponification provides yields comparable to the traditional TFA cleavage but recovery is not as convenient. Further improvements in the saponification workup will be evaluated by analyzing the effectiveness of simple trituration with acetone compared to use of a strong anion-exchange resin or drying reagents to isolate the free acid from the salt. Different trituration procedural modifications have been made and are being tested. Results have shown that in the presence of methanol, esterification will occur when the acid is liberated from the salt using HCl. To counter this problem, the samples are first evaporated to remove methanol and then the pH is adjusted with HCl. It was shown that using acetic acid did not result in pH levels low enough to guarantee complete protonation of the carboxylate. Through the use of a Bill-Board, an apparatus that holds six reaction vessels, several procedural modifications can be carried out simultaneously. Analysis is conducted by liquid chromatography coupled with a mass spectrometer and with nuclear magnetic resonance spectroscopy. Further studies will be carried out to assess the efficiency and practicality of using mild acidic conditions for cleavage using HCl/hexafluoroisopropanol or dilute HCl/trifluoroethanol. Both saponification and mild acid cleavage would represent improvements in safety and convenience to the undergraduate student researcher

    Discovery of highly insecticidal synthetic spinosyn mimics – CAMD enabled de novo design simplifying a complex natural product

    Get PDF
    Simplifying complex natural products: Computer modeling‐based design leads to highly insecticidal, chemically simpler synthetic mimics of the spinosyn natural products that are active in the field

    Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    Get PDF
    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis

    VERSATILE FMOC-ACETAL MERRIFIELD RESINS: SYNTHESES OF BICYCLIC LACTAMS & LACTONES

    Get PDF
    poster abstractThe preparation of Merrifield resins 5, which represent versatile intermediates in the syntheses of lactones, lactams, and bicyclic, tricyclic, and tetracyclic scaffolds, is described. The presence of Fmoc and acetal protecting groups allows for the eventual incorporation of ozone-labile groups at R2 (as in III) such as alkenes, alkynes, electron-rich aromatics and pi-excessive heterocycles whereas the previously reported route can only accommodate ozone-compatible groups. An extension of the current methodology to include bicyclic lactams, which features elaboration at each of R1, R2, and R3 of III including fragment condensation examples 10a-c, is described. In all cases separation and characterization of two of the four possible diastereomers was achieved. Using 2-D NMR methods the relative configuration of the two diastereomers is being established. Structures such as III are of interest since the thiazabicycloalkane ring system is a known bioactive scaffold that mimics the beta-turn (reverse turn) in polypeptides and proteins

    Saponification of N-Acylated L-Phenylalanine Wang and Merrifield Resins. Assessment of Cleavage Efficiency and Epimerization

    Get PDF
    poster abstractAs part of a continuing effort to modify Distributed Drug Discovery (D3) synthetic procedures to enhance safety and accommodate the limited resources available to students in developing-world countries, we have recently begun to examine alternatives to trifluoroacetic acid (TFA)-cleavage of amino acid derivatives from polystyrene-based resins. Cleavage of a representative example, N-(4-chlorobenzoyl)-L-phenylalanine, from both Wang and Merrifield resins was accomplished in thirty minutes at room temperature using 0.5M sodium hydroxide in methanol/tetrahydrofuran. In a side-by-side comparison with cleavage using TFA, results indicated that saponification from Wang resin was incomplete after thirty minutes. Experiments designed to examine separately the effect of reaction time, temperature, and concentration were performed and results will be presented. Additionally, investigations were performed to assess the degree of epimerization which had occurred during cleavage of Merrifield-bound L-phenylalanine acylated with both (R)- and (S)-mandelic acid. Results revealed a small but significant amount of epimerization (15:1 to 31:1 diastereomeric ratios) after a thirty-minute cleavage time at room temperature

    The incidence of deep vein thrombosis detected by routine surveillance ultrasound in neurosurgery patients receiving dual modality prophylaxis.

    Get PDF
    The optimal method of thromboprophylaxis and the value of screening ultrasonography for detection of deep venous thrombosis (DVT) in neurosurgery patients remains unclear. The goal of this study was to determine the incidence of DVT in neurosurgical patients who, by hospital protocol, receive surveillance ultrasonography of the lower extremities twice weekly, in addition to prophylaxis with unfractionated heparin and external pneumatic compression sleeves. A retrospective review of 7,298 ultrasound studies carried out on 2,593 patients over 4 years at a university neurosurgical hospital was conducted. There was a 7.4% incidence of proximal lower extremity DVT and a 9.7% total incidence including distal DVT. A greater number of distal DVTs were detected with the implementation of whole-leg ultrasonography in the last 2 years of observation. Chart review of 237 patients diagnosed with DVT demonstrated an admitting diagnosis of subarachnoid hemorrhage in nearly half of the patients. The median hospital length of stay for DVT patients was 18 days. Institutional control data demonstrated non-ruptured aneurysm and cerebrovascular anomalies to be the leading reason for admission, followed closely by subarachnoid hemorrhage. The hospital protocol of biweekly screening ultrasound and dual modality prophylaxis for neurosurgery patients resulted in a proximal DVT incidence consistent with that demonstrated by previous studies of standardized dual modality prophylaxis, and higher than that demonstrated in previous studies that employed ultrasound screening protocols

    High frequency temperature variability reduces the risk of coral bleaching

    Get PDF
    Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in predicting bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily temperature range would reduce the odds of more severe bleaching by a factor of 33. Our findings suggest that reefs with greater high-frequency temperature variability may represent particularly important opportunities to conserve coral ecosystems against the major threat posed by warming ocean temperatures

    Multi-omic studies on missense PLG variants in families with otitis media

    Get PDF
    Otitis media (OM), a very common disease in young children, can result in hearing loss. In order to potentially replicate previously reported associations between OM and PLG, exome and Sanger sequencing, RNA-sequencing of saliva and middle ear samples, 16S rRNA sequencing, molecular modeling, and statistical analyses including transmission disequilibrium tests (TDT) were performed in a multi-ethnic cohort of 718 families and simplex cases with OM. We identified four rare PLG variants c.112A > G (p.Lys38Glu), c.782G > A (p.Arg261His), c.1481C > T (p.Ala494Val) and c.2045 T > A (p.Ile682Asn), and one common variant c.1414G > A (p.Asp472Asn). However TDT analyses for these PLG variants did not demonstrate association with OM in 314 families. Additionally PLG expression is very low or absent in normal or diseased middle ear in mouse and human, and salivary expression and microbial a-diversity were non-significant in c.1414G > A (p.Asp472Asn) carriers. Based on molecular modeling, the novel rare variants particularly c.782G > A (p.Arg261His) and c.2045 T > A (p.Ile682Asn) were predicted to affect protein structure. Exploration of other potential disease mechanisms will help elucidate how PLG contributes to OM susceptibility in humans. Our results underline the importance of following up findings from genome-wide association through replication studies, preferably using multi-omic datasets.Peer reviewe

    Aminolytic Cleavage from Wang Resin. A New Distributed Drug Discovery Laboratory for the Undergraduate Curriculum

    Get PDF
    poster abstractWhen treated with ammonia or methylamine, unnatural amino acids bound to Wang resin (1) are released as their corresponding amides 2 in good yield and purity. When carried out at room temperature, aminolytic cleavage proceeds slowly with a four-day exposure to ammonia in methanol representing an optimal reaction time. Aminolytic cleavage proceeds well with unhindered primary amines, however, the hindered amine isopropylamine and benzylamines are unacceptably slow to effect cleavage. Use of the secondary amine pyrrolidine led to a complex mixture. Due to the large stoichiometric amine excess required, the scope is currently limited to unhindered, volatile, primary amines. The overall synthesis of 2 from BPI-Gly-Wang resin represents a new Distributed Drug Discovery Laboratory (D3-7) and was rolled out to the spring 2016 Organic II laboratory
    corecore