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Introduction 

Natural products (NP) have been and continue to be a source of products, starting materials 

and inspiration for the discovery and development of new chemical tools for crop protection1-3 

and pharmaceuticals.4  There are numerous examples of NPs serving as inspiration for new 

agrochemicals, the most significant (market share) NP-based classes today being the synthetic 

pyrethroids and the strobilurins which currently represent 16% and 31% of the insecticide and 

fungicide markets, respectively.3   However, the most important naturally occurring NPs 

currently in use directly as crop protection tools are the avermectins (abamectin) and spinosyns 

(spinosad 1),2,3 both naturally occurring insecticidal macrocyclic lactones.  These insecticidal 

macrolides are large complex molecules, represent novel areas of chemistry and, importantly, 

unique modes of action.5,6 Also, both of these macrolides have been subject to extensive post-

fermentation modification programs leading, in turn, to semi-synthetic derivatives including 

emamectin benzoate7,8 and spinetoram 49 which have themselves been developed as 

products,7,10 possessing improved insecticidal efficacy and expanded spectra.  In this way, 

these insecticidal macrolides show parallels with pharmaceutical antibiotic counterparts such as 

erythromycin and its semi-synthetic derivative azithromycin.11  

As already noted, NPs have served as inspiration for a wide range of pesticides.1,2  However, 

unlike other NPs, commercially viable synthetic mimics of the large macrolides have been 

unknown for agrochemicals and, as far as can be determined, pharmaceuticals.  We recently 

reported that simplified synthetic mimics of the complex spinosyn structure are indeed possible, 

exhibiting laboratory efficacy near that of spinetoram.12,13  Herein we provide further elaboration 

on the discovery and development of synthetic spinosyn mimics, resulting in highly active, 

photostable analogs that demonstrate excellent in vivo efficacy in the laboratory and field.    

Design of Synthetic Spinosyn Mimics 

The spinosyns, which include spinosad 1 and spinetoram 4 (Fig. 1), are class of large, complex 

macrolide natural products (NPs) that are highly insecticidal towards a broad spectrum of 

lepidopteran and other insect pests.  Interestingly, they also exhibit very favorable toxicological 

and environmental profiles, both molecules receiving the EPA Green Chemistry awards.10  The 

structure activity relationships (SAR) of the naturally occurring spinosyns and a wide range of 

semi-synthetic derivatives have been extensively explored.10,14-16  These studies, guided by an 
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artificial intelligence-based analysis of the spinosyn quantitative structure activity relationships,9 

ultimately lead to the discovery of spinetoram 4, a semi-synthetic derivative of spinosad 1 that 

retained the macrolide-based tetracycle core. However, in spite of the discovery and 

development of spinetoram 4, and the synthesis of more than 1000 analogs, further commercial 

exploitation of this chemistry was limited due the inherent complexity of the spinosyn macrolide 

tetracycle.  Hence, the idea of synthetic spinosyn mimics was considered.  

The synthesis of the spinosyn tetracycle has been demonstrated, but the syntheses are long 

and complex.17,18  Likewise, there have been some efforts to simplify parts of the tetracycle, but 

the fundamental structure of a large tetracycle remains.19  An early notion for a synthetic 

spinosyn envisioned a simple, rigid skeleton that could provide points of attachment for the two 

spinosyn sugar moieties, placing them in the correct geometry in 3D space; a concept later 

tested, but less effective than the path ultimately taken.  Another simpler approach was to use 

computer-aided molecular design (CAMD) to essentially reverse engineer the spinosyn 

structure by seeking potential scaffolds that could potentially fill the space of the tetracycle and 

allow for the addition of a linker to attach the rhamnose sugar, which was viewed as key for 

biological activity.  Provision was also made for potentially emulating all or part of the 

forosamine sugar. The hope was that the resultant molecule would be simpler than the complex 

molecular structure of spinosyns, open to further modification and optimization, and perhaps 

have different, exploitable physical properties.  Initial CAMD modeling of potential cores 

suggested that the pyridobenzimidazole (PBI) core structure (Fig. 1) might be a suitable starting 

point13 as it overlaid well with the spinosyn tetracycle.  Further CAMD-based modifications to the 

PBI-core included adding a 2’,3’,4’-tri-O-methyl rhamnose sugar via an indane linker to correctly 

place the rhamnose in its putative binding pocket and overlay with the rhamnose moiety of the 

spinosyns and a N,N-dimethyl amine to mirror the forosamine functionality. Although the 

resulting molecule 5 (Fig. 1) appeared to overlay well with spinosyn A (Fig. 2), it proved 

synthetically very challenging and when finally completed it was found to be virtually inactive. 

Conversely, the synthetic precursor (6) to the original target (5) proved to be of greater interest. 

The precursor molecule 6 (Fig. 1) also overlaid nicely with spinosyn A, placing the rhamnose 

sugar in the correct position (Fig. 2).13 Disappointingly, when 6 was evaluated using a standard 

in vivo diet bioassay, it was inactive. Because an in vitro binding assay for the spinosyns was 

not available, it was not possible to attribute the lack of activity to poor interaction at the 

spinosyn binding site, lack of structural components (i.e. forosamine), or to some other limitation 

such as poor uptake or metabolism. To better understand if the lack of activity was inherent in 
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the molecule, an injection assay was used as a substitute for an in vitro binding assay. 

Surprisingly, when 6 was injected into larvae of Spodoptera exigua (beet armyworm), within 

minutes the treated larvae began to exhibit symptoms consistent with intoxication by spinosyns. 

These symptoms included tremors, paralysis and rapid movement of mouth parts.13 

Interestingly, the modeling suggested two potential ways to overlay analog 6 with the structure 

of spinosyn A; the first put the structure of 6 into the space occupied by the forosamine (not 

shown) similar to that proposed for analog 5 (Fig. 2), while the second put 6 into the space 

around the C21 position (Fig. 2).  As noted above, when tested in the injection assays, analog 5 

showed little in the way of symptoms, suggesting that the addition of an N,N-dimethyl amine 

only served to greatly decrease activity relative to analog 6.  These observations highlighted the 

idea that the alignment of analog 6 through the C21-position was likely the more relevant motif.    

The observation of spinosyn-like symptoms was enough to fuel further exploration around this 

initial structure using further CAMD-based investigations and bioactivity directed synthesis, 

initially all driven by symptomology.13 These efforts led to a series of molecules that ultimately 

resulted in analog 7 (Fig.1) which retained the indane-rhamnose configuration of analog 6, but 

simplified the PBI core with an aryl-pyrimidine moiety. Analog 7 represented the first synthetic 

spinosyn motif to exhibit in vivo insecticidal activity (Table 1).  The structural evolution leading to 

analog 7 was a lengthy process requiring thousands of larval injections over a period of two 

years.  The in vivo insect activity of analog 7 led to further optimization around the tri-aryl 

nucleus, including replacement of the indane linker with an oxime and replacing the pyrimidine 

with alternative heterocycles, leading ultimately to a triazole. Finally, extensive analog synthesis 

investigating a range of substituents around the two phenyl rings of the tri-aryl ring system led to 

the incorporation of a p-CF3CF2O- substituent on the aryl A-ring (Ar-A), leading to analog 8 (Fig. 

1).  Analog 8 also incorporated lessons from the spinosyn SAR14,15 by incorporating an O-ethyl 

in the 3’-position of the rhamnose (Fig. 1), providing a further boost in insecticidal potency.12 

Analog 8 displayed excellent in vivo activity against lepidopteran insect pests such as S. exigua 

and Helicoverpa zea (corn earworm) that was equal to spinetoram (Table 1). However, 

greenhouse tests showed that analog 8 with the oxime linker was not photostable (Table 1), 

showing a substantial decline in efficacy after a few days of UV exposure.  This UV greenhouse 

data stimulated further structural exploration resulting in replacement of the oxime-linker of 

analog 8 with a carbamate-linker to yield analog 9, which retained insecticidal efficacy similar to 

spinetoram for the lepidopteran species tested (Table 1).  Importantly, analog 9 also maintained 

its insecticidal activity even under UV conditions (Table 1). These observations were further 
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validated in field tests where analog 9 was found to be as effective as spinetoram against larvae 

of Trichopluisa ni (cabbage looper) (Fig. 3).    

Mode of Action 

In light of the very significant structural departure of the synthetic spinosyn mimics from that of 

the spinosyns, the obvious question of the mode of action arises.  The molecular target site of 

the spinosyns is an allosteric site associated with the α6 subunit of the insect nicotinic 

acetylcholine receptor (nAChR), with no cross-resistance to other modes of action.16,20  As 

already noted, an in vitro target site binding assay for the spinosyns was not available. 

However, resistance to the spinosyns is primarily due to alterations or point mutations in the α6-

subunit of the nAChR.16 A strain of Drosophila melanogaster (fruit fly) highly resistant to the 

spinosyns and possessing an altered Dα6 nAChR20 was used to explore the mode of action of 

the spinosyn mimics.  Analogs 8 and 9 were both found to be highly cross-resistant in this 

spinosyn resistant strain (Table 1), both at levels similar to spinosad and spinetoram, indicating 

the strong likelihood that 8 and 9 possess the same mode of action as the spinosyns.    

Summary 

Our studies show that the large, complex macrolide tetracycle of the spinosyns can be 

effectively emulated by a simple tri-aryl framework.  Importantly, these new synthetic spinosyn 

mimics appear to possess the same mode of action of the spinosyns, can be more active than 

the NP (spinosad), and are as active in the field as the more recent semi-synthetic spinosyn 

derivative, spinetoram.  An unexpected observation with these new synthetic spinosyn mimics is 

that based on the overlays with spinosyn A (Fig. 2), the forosamine sugar appears to be outside 

the synthetic mimic motif, suggesting that the forosamine sugar or its equivalent bioisostere is 

not essential for insecticidal activity for these novel molecules.  This observation is in marked 

contrast to the spinosyn NPs where loss of the forosamine leads to a dramatic loss in 

insecticidal activity.10,15,16   Interestingly, the binding space around the C21-position of the 

spinosyns appears tolerant of fairly large substituents as evidenced by the good insecticidal 

activity of spinosyn analogs possessing a range of C21 substitutions far larger than the ethyl 

group of spinosad including butenyl, styrene, cyclobutyl, etc.21,22  Thus, the likely alignment of 

the synthetic spinosyns mimics into this space is consistent with what is known regarding the 

spinosyn SAR.  Importantly, and as noted previously, these new synthetic spinosyn mimics 

represent the first time synthetic mimics with efficacy equal to or better than their natural 

counterparts have been discovered for any agricultural macrolide NP and, as far as can be 
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ascertained, in the pharmaceutical arena as well.  Implicit in our results is the idea that it may 

also be possible to simplify other macrolide-based compounds including macrolide antibiotics 

and other crop protection products, presenting new options for exploiting novel NP modes of 

action with attributes outside of those observed for the NP, including different physical 

properties, enhanced efficacy, and perhaps altered spectrum. Although the resulting synthetic 

spinosyn mimics did not quite achieve the reduction in molecular size envisioned, they are still 

smaller and chemically simpler than the spinosyn NPs.  An issue with the prior spinosyn mimic 

(8) was the UV-instability of the oxime linker – the carbamate bioisostere solves that problem

leading to a synthetic spinosyn mimic (9) that is both more photostable and active in the field. 

Thus, the idea of devising chemically simpler mimics of the large spinosyn macrolides has gone 

from concept to reality.    

Acknowledgements.  We thank Cathy Young, Melissa Harris and Ricky Hunter for bioassay 

support, Dr. Melissa Siebert for the field test data, and Mr. Jerry Watson and Drs. Debra 

Camper, Ronda Hamm, James Hunter, and Michael Loso for very useful comments and 

discussions. We also thank the editor and the anonymous reviewers for their very helpful 

comments and suggestions. 

References 

1. Cantrell CL, Dayan FE and Duke SO, Natural products as source for new pesticides, J. Nat

Prod. 75:1231-1242 (2012). 

2. Gerwick BC and Sparks TC, Natural products for pest control: an analysis of their role, value

and future, Pest Manag. Sci., 70, 1169-1185 (2014). 

3. Sparks TC, Hahn DR, Garizi NV, Natural products, their derivatives, mimics and synthetic

equivalents: Role in agrochemical discovery, Pest Manag. Sci., 73, 1169-1185 (2017). 

4. Newman DJ, Cragg GM, Natural products as sources of new drugs from 1981 to 2014, J Nat.

Prod., 79, 629-661 (2016). 

5. Sparks TC and Nauen R, IRAC: Mode of action classification and insecticide resistance

management, Pestic. Biochem. Physiol. 121, 122-128 (2015). 

6. Yu S, The Toxicology and Biochemistry of Insecticides, 2nd ed., CRC Press, Boca Raton, FL.

(2015). 

7. Kornis GI, Avermectins and milbemycins, In Agrochemicals from Natural Products, ed. by

Godfrey, CRA, Marcel Dekker, New York, pp. 215-255 (1995). 



A
cc

ep
te

d 
A

rti
cl

e

 

8. Pitterna T, Chloride channel activators / new natural products: Avermectins and milbemycins,

In Modern Crop Protection Compounds Vol. 3: Insecticides, 2nd ed, ed. by Krämer W, 

Schirmer U, Jeschke P, Witschel M, Wiley-VCH, Weinheim, GR, pp. 1305-1326  (2012). 

9. Sparks TC, Crouse GD, Dripps JE, Anzeveno P, Martynow J, DeAmicis CV, Gifford J, Neural

network-based QSAR and insecticide discovery: spinetoram, J. Comput. Aided Mol. 

Des. 22:393-401 (2008). 

10. Dripps JE, Boucher RE, Chloridis A, Cleveland CB, DeAmicis CV, Gomez LE, Paroonagian

DL, Pavan LA, Sparks TC, Watson GB, The spinosyn insecticides, In Green Trends in 

Insect Control ed. by Lopez O, Fernandez-Bolanos JG, RSC Publishing, Cambridge, 

UK, pp. 163-212 (2011) 

11. Jelic D, Antolovic R, From erythromycin to azithromycin and new potential ribosome-binding

antimicrobials, Antibiotics, 5, 29 (2016). 

12. Sparks TC, Crouse GD, Demeter DA, Brown A, Bryan K, Samaritoni JG, Insecticide

discovery – Synthetic spinosyn mimics, Abstract, Agro 388, 254th American Chemical 

Society National Meeting, Washington DC, Aug. 20-24 (2017). 

13. Crouse GD, Demeter DA, Samaritoni G, McLeod, CL, Sparks TC, De novo design of potent

insecticidal synthetic mimics of spinosyn macrolide natural products, Sci. Reports, 

8:4861 (2018).   

14. Crouse GD, Sparks TC, Schoonover J, Gifford JM, Bruce T, Worden TV, Martynow JG,

Recent advances in the chemistry of the spinosyns.  Pest Management Sci. 57, 177-185 

(2001). 

15. Sparks TC, Crouse GD, Durst G, Natural products as insecticides: The biology, biochemistry

and quantitative structure activity relationships of spinosyns and spinosoids. Pest 

Management Sci. 57, 896-905 (2001). 

16. Geng C, Watson GB, Sparks TC, Nicotinic acetylcholine receptors as spinosyns targets for

insect pest management, In Target Receptors in the Control of Insect Pests: Part I, 

Advances in Insect Physiology, Vol. 44, E. Cohen, ed., Academic Press, pp. 101-210 

(2013). 

17. Paquette LA, Collado I, Purdie M, Total synthesis of spinosyn A. 2. Degradation studies

involving the pure factor and its complete reconstitution, J. Am. Chem. Soc. 129, 2553-

2562 (1998).  

18. Mergott DJ, Frank SA, Roush WR, Total synthesis of (-)-spinosyn A, PNAS 101, 11955-

11959 (2004). 



A
cc

ep
te

d 
A

rti
cl

e

 

19. Tietze LF, Brasche G, Grube A, Bohnke N, Stadler C, Synthesis of novel spinosyn A

analogues by Pd-mediated transformations, Chem Eur. J. 13, 8543-8563 (2007). 

20. Watson GB, Chouinard SW, Cook KR, Geng C, Gifford JM, Gustafson GD, Hasler JM,

Larrinua IM, Letherer TJ, Mitchell JC,Pak WL, Salgado VL, Sparks TC, Stilwell GE, 

Heterologus expression of a spinosyn-sensitive Drosophila melanogaster nicotinic 

acetylcholine receptor identified through chemically induced target site resistance and 

resistance gene identification. Insect Biochem. Molec. Biol. 40, 376-384 (2010). 

21. Sheehan LS, Lill RE, Wilkinson B, Sheridan RM, Vousden WA, Kaja AL, Crouse GD, Gifford

J, Graupner P, Karr L, Lewer P, Sparks TC, Leadlay PF, Waldron C, Martin CJ,  

Engineering the spinosyn PKS: directing starter unit incorporation. J Nat Prod 69:1702–

1710 (2006). 

22. Daeuble J, Sparks TC, Johnson P, Graupner PR, Modification of the butenyl-spinosyns utilizing

cross-metathesis.  Bioorg. Med. Chem. 17, 4197–4205 (2009). 

23. Crouse GD, Sparks TC, McLeod CL, Demeter DA,  Bryan K, Brown AV, Dent WH III,

Cudworth DP, Nugent JS, Hunter R, Samaritoni JG, Pesticidal heterocyclic aromatic 

compounds prepared with pyranose intermediates PCT Int. Appl., WO2009102736 A1, 

US 9006468. 228 pages (2009). 

24. Crouse GD, Sparks TC, McLeod CL, Demeter DA,  Benko ZL, Camper DL, Pesticidal

compositions of pyrimidine derivatives, U.S. Pat. Appl. Publ., US 20100204164 A1 

20100812. 25 pages (2010). 



A
cc

ep
te

d 
A

rti
cl

e

 

Fig. 1. Structures of commercial insecticides, spinosad 1 and spinetoram 4, and a conceptual 
route to the discovery of the synthetic spinosyn mimics.  Spinosyn mimics were 
synthesized as described by Crouse et al. 13,23,24  
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Fig. 2. 3D-structures and overlay of spinosyn A 2, the PBI core 5, the initial PBI-based spinosyn 
mimic 6 and the optimized synthetic spinosyn mimic 9 possessing a triaryl replacement for the 
spinosyn macrocycle.   Structures 6 & 9 are aligned to the 2’,3’,4’-tri-O-methyl rhamnose of 
spinosyn A 2. 

Fig. 3. Field efficacy of the synthetic spinosyn mimic 9 compared to spinetoram against larvae 
of Trichoplusia ni (cabbage looper) on cabbage in Wayside MS.  *Statistically different from 
control, LSD (P=0.05).   
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Table 1.  Insecticidal activity of spinosad, spinetoram, and selected synthetic spinosyn mimics 
to larvae of S. exigua (Se), H. zea (Hz), and adults of two strains (WT and spinosad-resistant) of 
D. melanogaster (Dm).

Assaya    Cpd. 1
b

4
b

  6   7  8 9 

Se. LC50 µg/cm
2 

(95% FL)
3

Hz. LC50 µg/cm
2 

(95% FL)
c

WT Dm
d
 LC50 

ppm 
(95% FL) 

SR Dm
e
 LC50 

ppm 
(95% FL) 

RR
f

Greenhouse UV 
Se LC50 gai/ha 

0.052 
(0.021-
0.083) 

0.058 
(0.045-
0.075) 

0.035 
(0.009-
0.123) 

10.9 
(9.29-13.4) 

311 

0.0077 
(0.0044-
0.015) 

0.0087 
(0.0073-
0.010) 

0.025 
(0.0204-
0.032) 

3.52 
(2.79-4.38) 

139 

>12.5

>12.5

  -- 

 -- 

 -- 

<12.5
g

<12.5
g

-- 

-- 

-- 

0.0046 
(0.0038-
0.0055) 

0.0034 
(0.0029-
0.0040) 

0.0048 
(0.0035-
0.0057) 

0.55 
(0.39-0.72) 

114 

0.0052 
(0.0017-
0.0105) 

0.0043 
(0.0036-
0.0052) 

0.0306 
(0.0252-
0.0373) 

3.75 
(3.07-4.46) 

123 

Day 2
h

Day 4 
Day 7 

   -- 
   -- 
   -- 

3.0 
1.5 
3.5 

  -- 
  -- 
  -- 

-- 
-- 
-- 

    1.3 
>10
>10

0.9 
1.3 
1.8 

a Data for compounds 1,4,6,8 against Se, Hz, WT Dm, SR Dm adapted from13  
b 1 = spinosad, 4 = spinetoram 
c FL = fiducial limits 
d Wild type (susceptible) adult D. melanogaster. 
e Spinosad-resistant adult D. melanogaster – see reference 9 for details. 
f Resistance ratio: LC50 SR-Dm / LC50 WT Dm. 
g 100% mortality - lowest dosage tested  
h Days post treatment – plants were treated and then held under UV conditions – larvae were 
placed on treated leaves at internals of 2, 4 and 7 days post-treatment and then held 5 days 
after which mortality was determined.   




