44 research outputs found

    Quantification of miRNA-mRNA Interactions

    Get PDF
    miRNAs are small RNA molecules (â€Č 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely. Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method TaLasso (miRNA-Target LASSO)

    A Potential Regulatory Role for Intronic microRNA-338-3p for Its Host Gene Encoding Apoptosis-Associated Tyrosine Kinase

    Get PDF
    MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3â€Č untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration

    Impact of Host Genes and Strand Selection on miRNA and miRNA* Expression

    Get PDF
    Dysregulation of miRNAs expression plays a critical role in the pathogenesis of genetic, multifactorial disorders and in human cancers. We exploited sequence, genomic and expression information to investigate two main aspects of post-transcriptional regulation in miRNA biogenesis, namely strand selection regulation and expression relationships between intragenic miRNAs and host genes. We considered miRNAs expression profiles, measured in five sizeable microarray datasets, including samples from different normal cell types and tissues, as well as different tumours and disease states. First, the study of expression profiles of “sister” miRNA pairs (miRNA/miRNA*, 5â€Č and 3â€Č strands of the same hairpin precursor) showed that the strand selection is highly regulated since it shows tissue-/cell-/condition-specific modulation. We used information about the direction and the strength of the strand selection bias to perform an unsupervised cluster analysis for the sample classification evidencing that is able to distinguish among different tissues, and sometimes between normal and malignant cells. Then, considering a minimum expression threshold, in few miRNA pairs only one mature miRNA is always present in all considered cell types, whereas the majority of pairs were concurrently expressed in some cell types and alternatively in others. In a significant fraction of concurrently expressed pairs, the major and the minor forms found at comparable levels may contribute to post-transcriptional gene silencing, possibly in a coordinate way. In the second part of the study, the behaved tendency to co-expression of intragenic miRNAs and their “host” mRNA genes was confuted by expression profiles examination, suggesting that the expression profile of a given host gene can hardly be a good estimator of co-transcribed miRNA(s) for post-transcriptional regulatory networks inference. Our results point out the regulatory importance of post-transcriptional phases of miRNAs biogenesis, reinforcing the role of such layer of miRNA biogenesis in miRNA-based regulation of cell activities

    Consensus Recommendations for Clinical Outcome Assessments and Registry Development in Ataxias: Ataxia Global Initiative (AGI) Working Group Expert Guidance

    Get PDF
    To accelerate and facilitate clinical trials, the Ataxia Global Initiative (AGI) was established as a worldwide research platform for trial readiness in ataxias. One of AGI’s major goals is the harmonization and standardization of outcome assessments. Clinical outcome assessments (COAs) that describe or reflect how a patient feels or functions are indispensable for clinical trials, but similarly important for observational studies and in routine patient care. The AGI working group on COAs has defined a set of data including a graded catalog of COAs that are recommended as a standard for future assessment and sharing of clinical data and joint clinical studies. Two datasets were defined: a mandatory dataset (minimal dataset) that can ideally be obtained during a routine clinical consultation and a more demanding extended dataset that is useful for research purposes. In the future, the currently most widely used clinician-reported outcome measure (ClinRO) in ataxia, the scale for the assessment and rating of ataxia (SARA), should be developed into a generally accepted instrument that can be used in upcoming clinical trials. Furthermore, there is an urgent need (i) to obtain more data on ataxia-specific, patient-reported outcome measures (PROs), (ii) to demonstrate and optimize sensitivity to change of many COAs, and (iii) to establish methods and evidence of anchoring change in COAs in patient meaningfulness, e.g., by determining patient-derived minimally meaningful thresholds of change

    NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    Get PDF
    MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome--referred to as the micronome--to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal--mirDIP (http://ophid.utoronto.ca/mirDIP).mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs.Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level

    Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic <it>in situ </it>screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models.</p> <p>Results</p> <p>To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq) to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section <it>in situ </it>hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs.</p> <p>Conclusion</p> <p>The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events.</p

    Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential

    Get PDF

    MicroRNA target prediction by expression analysis of host genes.

    No full text
    MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression by inducing RNA cleavage or translational inhibition. Most human miRNAs are intragenic and are transcribed as part of their hosting transcription units. We hypothesized that the expression profiles of miRNA host genes and of their targets are inversely correlated and devised a novel procedure, HOCTAR (host gene oppositely correlated targets), which ranks predicted miRNA target genes based on their anti-correlated expression behavior relative to their respective miRNA host genes. HOCTAR is the first tool for systematic miRNA target prediction that utilizes the same set of microarray experiments to monitor the expression of both miRNAs (through their host genes) and candidate targets. We applied the procedure to 178 human intragenic miRNAs and found that it performs better than currently available prediction softwares in pinpointing previously validated miRNA targets. The high-scoring HOCTAR predicted targets were enriched in Gene Ontology categories, which were consistent with previously published data, as in the case of miR-106b and miR-93. By means of overexpression and loss-of-function assays, we also demonstrated that HOCTAR is efficient in predicting novel miRNA targets and we identified, by microarray and qRT-PCR procedures, 34 and 28 novel targets for miR-26b and miR-98, respectively. Overall, we believe that the use of HOCTAR significantly reduces the number of candidate miRNA targets to be tested compared to the procedures based solely on target sequence recognition. Finally, our data further confirm that miRNAs have a significant impact on the mRNA levels of most of their targets
    corecore