389 research outputs found

    Pairwise wave interactions in ideal polytropic gases

    Full text link
    We consider the problem of resolving all pairwise interactions of shock waves, contact waves, and rarefaction waves in 1-dimensional flow of an ideal polytropic gas. Resolving an interaction means here to determine the types of the three outgoing (backward, contact, and forward) waves in the Riemann problem defined by the extreme left and right states of the two incoming waves, together with possible vacuum formation. This problem has been considered by several authors and turns out to be surprisingly involved. For each type of interaction (head-on, involving a contact, or overtaking) the outcome depends on the strengths of the incoming waves. In the case of overtaking waves the type of the reflected wave also depends on the value of the adiabatic constant. Our analysis provides a complete breakdown and gives the exact outcome of each interaction.Comment: 39 page

    Localization of interacting electrons in quantum dot arrays driven by an ac-field

    Get PDF
    We investigate the dynamics of two interacting electrons moving in a one-dimensional array of quantum dots under the influence of an ac-field. We show that the system exhibits two distinct regimes of behavior, depending on the ratio of the strength of the driving field to the inter-electron Coulomb repulsion. When the ac-field dominates, an effect termed coherent destruction of tunneling occurs at certain frequencies, in which transport along the array is suppressed. In the other, weak-driving, regime we find the surprising result that the two electrons can bind into a single composite particle -- despite the strong Coulomb repulsion between them -- which can then be controlled by the ac-field in an analogous way. We show how calculation of the Floquet quasienergies of the system explains these results, and thus how ac-fields can be used to control the localization of interacting electron systems.Comment: 7 pages, 6 eps figures V2. Minor changes, this version to be published in Phys. Rev.

    Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. IX: Constraint of pairing force to 1S0^1S_0 neutron-matter gap

    Full text link
    In this latest of our series of Skyrme-HFB mass models, HFB-16, we introduce the new feature of requiring that the contact pairing force reproduce at each density the 1S0^1S_0 pairing gap of neutron matter as determined in microscopic calculations with realistic nucleon-nucleon forces. We retain the earlier constraints on the Skyrme force of reproducing the energy-density curve of neutron matter, and of having an isoscalar effective mass of 0.8M0.8M in symmetric infinite nuclear matter at the saturation density; we also keep the recently adopted device of dropping Coulomb exchange. Furthermore, the correction term for the spurious energy of collective motion has a form that is known to favour fission barriers that are in good agreement with experiment. Despite the extra constraints on the effective force, we have achieved a better fit to the mass data than any other mean field model, the rms error on the 2149 measured masses of nuclei with NN and ZZ \ge 8 having been reduced to 0.632 MeV; the improvement is particularly striking for the most neutron-rich nuclei. Moreover, it turns out that even with no flexibility at all remaining for the pairing force, the spectral pairing gaps that we find suggest that level densities in good agreement with experiment should be obtained. This new force is thus particularly well-suited for astrophysical applications, such as stellar nucleosynthesis and neutron-star crusts.Comment: 38 pages, 9 figures accepted for publication in Nuclear Physics

    Relativistic chiral representation of the πN\pi N scattering amplitude I: The Goldberger-Treiman relation

    Full text link
    In this work we study the πN\pi N scattering process within the Baryon Chiral Perturbation Theory framework in the covariant scheme of Extended-On-Mass-Shell (EOMS). We compare the description obtained in this scheme with the previously obtained using the Infrared Regularization scheme and show that EOMS accomplishes the best convergence, being able to extract from partial wave analyses reliable values of important quantities as the Goldberger-Treiman deviation. In regard to the latter, we solve the long-standing problem concerning to the extraction of the Goldberger-Treiman deviation with covariant ChPT that jeopardized the applicability of ChPT to the πN\pi N system. We also show the potential of the unitarization techniques applied to the perturbative calculation in the EOMS scheme, that allow us to increase the range of validity of our description up to 200\approx 200 MeV in s\sqrt{s}.Comment: PROCEEDINGS to the 33rd International School of Nuclear Physics "From Quarks and Gluons to Hadrons and Nuclei"- 7 Pag,, 1 Table, 4 Figures. Erice-Sicily: 16 - 24 September 201

    Large-scale magnetic fields from inflation due to a CPTCPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields

    Full text link
    We investigate the generation of large-scale magnetic fields due to the breaking of the conformal invariance in the electromagnetic field through the CPTCPT-even dimension-six Chern-Simons-like effective interaction with a fermion current by taking account of the dynamical Kalb-Ramond and scalar fields in inflationary cosmology. It is explicitly demonstrated that the magnetic fields on 1Mpc scale with the field strength of 109\sim 10^{-9}G at the present time can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys. J.

    Slowing polar molecules using a wire Stark decelerator

    Get PDF
    We have designed and implemented a new Stark decelerator based on wire electrodes, which is suitable for ultrahigh vacuum applications. The 100 deceleration stages are fashioned out of 0.6 mm diameter tantalum and the array's total length is 110 mm, approximately 10 times smaller than a conventional Stark decelerator with the same number of electrode pairs. Using the wire decelerator, we have removed more than 90% of the kinetic energy from metastable CO molecules in a beam.Comment: updated version, added journal referenc

    Location of crossings in the Floquet spectrum of a driven two-level system

    Get PDF
    Calculation of the Floquet quasi-energies of a system driven by a time-periodic field is an efficient way to understand its dynamics. In particular, the phenomenon of dynamical localization can be related to the presence of close approaches between quasi-energies (either crossings or avoided crossings). We consider here a driven two-level system, and study how the locations of crossings in the quasi-energy spectrum alter as the field parameters are changed. A perturbational scheme provides a direct connection between the form of the driving field and the quasi-energies which is exact in the limit of high frequencies. We firstly obtain relations for the quasi-energies for some common types of applied field in the high-frequency limit. We then show how the locations of the crossings drift as the frequency is reduced, and find a simple empirical formula which describes this drift extremely well in general, and appears to be exact for the specific case of square-wave driving.Comment: 6 pages, 6 figures. Minor changes to text, this version to be published in Physical Review

    Photoproduction of the f2(1270) resonance

    Get PDF
    We have performed a calculation of the γp→π+π−p reaction, where the two pions have been separated in D-wave producing the f2(1270) resonance. We use elements of the local hidden gauge approach that provides the interaction of vector mesons in which the f2(1270) resonance appears as a ρ-ρ molecular state in L=0 and spin 2. The vector meson dominance, incorporated in the local hidden gauge approach converts a photon into a ρ0 meson and the other meson connects the photon with the proton. The picture is simple and has no free parameters, since the parameters of the theory have been constrained in the previous study of the vector-vector states. In a second step we introduce new elements, not present in the local hidden gauge approach, adapting the ρ propagator to Regge phenomenology and introducing the ρNN tensor coupling. We find that both the differential cross section as well as the t dependence of the cross section are in good agreement with the experimental results and provide support for the molecular picture of the f2(1270) in the first baryonic reaction where it has been tested

    Charmless hadronic decays BPP,PV,VVB \to PP, PV, VV and new physics effects in the general two-Higgs doublet models

    Get PDF
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to the branching ratios of the two-body charmless hadronic decays of BuB_u and BdB_d mesons induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs doublet models (models I, II and III). Within the considered parameter space, we find that: (a) the new physics effects from new gluonic penguin diagrams strongly dominate over those from the new γ\gamma- and Z0Z^0- penguin diagrams; (b) in models I and II, new physics contributions to most studied B meson decay channels are rather small in size: from -15% to 20%; (c) in model III, however, the new physics enhancements to the penguin-dominated decay modes can be significant, (30200)\sim (30 -200)%, and therefore are measurable in forthcoming high precision B experiments; (d) the new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in model III, (3570)\sim (35 -70)%, and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B \to K \etap decay rates; (e) the theoretical predictions for B(BK+π){\cal B}(B \to K^+ \pi) and B(BK0π+){\cal B}(B \to K^0 \pi^+) in model III are still consistent with the data within 2σ2\sigma errors; (f) the significant new physics enhancements to the branching ratios of BK0π0,Kη,K+π,K+ϕ,K0ω,K+ϕB \to K^0 \pi^0, K^* \eta, K^{*+} \pi^-, K^+ \phi, K^{*0} \omega, K^{*+} \phi and K0ϕK^{*0} \phi decays are helpful to improve the agreement between the data and the theoretical predictions; (g) the theoretical predictions of B(BPP,PV,VV){\cal B}(B \to PP, PV, VV) in the 2HDM's are generally consistent with experimental measurements and upper limits (9090% C.L.)Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections, final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4
    corecore