29 research outputs found

    Optical nonlinearity goes ultrafast in 2D semiconductor-based nanocavities

    Get PDF
    : Hybrid systems of silver nanodisks strongly coupled to monolayer tungsten-disulfide (WS2) show giant room-temperature nonlinearity due to their deeply sub-wavelength localized nature, resulting in ultrafast modifications of nonlinear absorption in a solid-state system

    Strong Coupling: l’entanglement tra luce e materia

    Get PDF

    Ultrafast flow of interacting organic polaritons

    Full text link
    The strong-coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton-polaritons, which have been shown to combine the best properties of their bare components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch Surface Wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the studies of organic nonlinear light-matter fluxes and for a technological promising route of dissipation-less on-chip polariton devices working at room temperature.Comment: Improved version with polariton-polariton interactions. 13 pages, 4 figures, supporting 6 pages, 6 figure

    The enhancement of excitonic emission crossing Saha equilibrium in trap passivated CH3NH3PbBr3 perovskite

    Get PDF
    Metal-halide semiconductor perovskites have received great attention for the development of stable and efficient light emitting diodes and lasers, since they combine high charge carrier mobility and light emission spectral-purity with low-cost fabrication methods. Nevertheless, the role of excitons, free carries and trap states in perovskite light emission properties is still unclear due to their interdependence. In this paper we selectively manage trapping and light emission mechanisms by a reversible laser-assisted trap-passivation process performed on a CH3NH3PbBr3 perovskite layer, coupled to the inner modes of a high-quality micro-cavity, which only affects the radiative recombination. We show that photoluminescence is dominated by exciton radiative decay process and that trap states passivation increases the exciton gemination rate by reducing coulombic scattering of free electrons due to the ionized impurities. This picture provides a more general description than the model based on trap states-free Saha thermodynamic equilibrium between photo-generated species. The interdependence of free carries, trap states and excitons in the light emission properties of CH3NH3PbBr3 perovskite thin films and their relationship to device performance is a subject of debate. Here, the authors investigate the role of non-radiative recombination and demonstrate that the photoluminescence is dominated by exciton radiative decay processes

    Hyperspectral microscopy of two-dimensional semiconductors

    Get PDF
    Here we present an interferometric wide field hyperspectral microscope based on a common-path birefringent interferometer with translating wedges, to measure photoluminescence emission from two-dimensional semiconductors. We show diffraction-limited hyperspectral photoluminescence microscopy from two-dimensional materials across millimeter areas, proving that our hyperspectral microscope is a compact, stable and fast tool to characterize the optical properties and the morphology of 2D materials across ultralarge areas

    Strong Coupling of Coherent Phonons to Excitons in Semiconducting Monolayer MoTe2_2

    Get PDF
    The coupling of the electron system to lattice vibrations and their time-dependent control and detection provides unique insight into the non-equilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2HH-MoTe2_2 encapsulated with hhBN using broadband optical pump-probe microscopy. The sub-40-fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to ∼\sim20% of the maximum transient signal, due to the displacive excitation of the out-of-plane A1gA_{1g} phonon. Ab-initio calculations reveal a dramatic rearrangement of the optical absorption of monolayer MoTe2_2 induced by an out-of-plane stretching and compression of the crystal lattice, consistent with an A1gA_{1g}-type oscillation. Our results highlight the extreme sensitivity of the optical properties of monolayer TMDs to small structural modifications and their manipulation with light.Comment: 27 pages, 4 figures, supporting informatio
    corecore