54 research outputs found

    In situ Rheo-GISANS of triblock copolymers : gelation and shear effects on quasi-crystalline structures at interfaces

    Get PDF
    The behaviour of polymeric systems at surfaces and under flow is extremely important in many applications, ranging from drug delivery to lubrication. We have studied a model triblock copolymer in deuterated water combining in situ rheology and grazing incidence small angle neutron scattering. Several thermotropic phases appear as a function of the temperature, including a bicontinuous phase not present in the bulk. Moreover, gelation can occur following a different route depending on the concentration. We show that shearing can be used to monitor the structural integrity of the micellar systems and in some cases as a tool for modifying the thermotropic phases: an fcc (face centred cubic) phase is sheared into a hcp (hexagonally close packed) phase, and is then recovered by cycling the temperature

    Spatio-temporal coherent control of thermal excitations in solids

    Full text link
    X-ray reflectivity (XRR) measurements of femtosecond laser-induced transient gratings are applied to demonstrate the spatio-temporal coherent control of thermally induced surface deformations on ultrafast timescales. Using gracing incidence X-ray diffraction we unambiguously measure the amplitude of transient surface deformations with sub-\AA{} resolution. Understanding the dynamics of femtosecond TG excitations in terms of superposition of acoustic and thermal gratings makes it possible to develop new ways of coherent control in X-ray diffraction experiments. Being the dominant source of TG signal, the long-living thermal grating with spatial period Λ\Lambda can be canceled by a second, time-delayed TG excitation shifted by Λ/2\Lambda/2. The ultimate speed limits of such an ultrafast X-ray shutter are inferred from the detailed analysis of thermal and acoustic dynamics in TG experiments

    Structured oligo(aniline) nanofilms via ionic self-assembly

    Get PDF
    Conducting polymers have shown great potential for application in electronic devices. A major challenge in such applications is to control the supramolecular structures these materials form to optimise the functionality. In this work we probe the structure of oligo(aniline) thin films (of sub-μm thickness) drop cast on a silicon substrate using synchrotron surface diffraction. Self-assembly was induced through doping with an acid surfactant, bis(ethyl hexyl) phosphate (BEHP), resulting in the formation of well-ordered lamellae with the d-spacing ranging from 2.15 nm to 2.35 nm. The exact structural characteristics depended both on the oligomer chain length and film thickness, as well as the doping ratio. Complementary UV/Vis spectroscopy measurements confirm that such thin films retain their bulk electronic properties. Our results point to a simple and effective ionic self-assembly approach to prepare thin films with well-defined structures by tailoring parameters such as the oligomer molecular architecture, the nanofilm composition and the interfacial roughness

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    • …
    corecore