8 research outputs found

    BioExcel Building Blocks Workflows (BioBB-Wfs), an integrated web-based plartform for biomolecular simulations.

    Get PDF
    We present BioExcel Building Blocks Workflows, a web-based graphical user interface (GUI) offering access to a collection of transversal pre-configured biomolecular simulation workflows assembled with the BioExcel Building Blocks library. Available workflows include Molecular Dynamics setup, protein-ligand docking, trajectory analyses and small molecule parameterization. Workflows can be launched in the platform or downloaded to be run in the users' own premises. Remote launching of long executions to user's available High-Performance computers is possible, only requiring configuration of the appropriate access credentials. The web-based graphical user interface offers a high level of interactivity, with integration with the NGL viewer to visualize and check 3D structures, MDsrv to visualize trajectories, and Plotly to explore 2D plots. The server requires no login but is recommended to store the users' projects and manage sensitive information such as remote credentials. Private projects can be made public and shared with colleagues with a simple URL. The tool will help biomolecular simulation users with the most common and repetitive processes by means of a very intuitive and interactive graphical user interface. The server is accessible at https://mmb.irbbarcelona.org/biobb-wfs

    The BioExcel methodology for developing dynamic, scalable, reliable and portable computational biomolecular workflows

    Get PDF
    Developing complex biomolecular workflows is not always straightforward. It requires tedious developments to enable the interoperability between the different biomolecular simulation and analysis tools. Moreover, the need to execute the pipelines on distributed systems increases the complexity of these developments. To address these issues, we propose a methodology to simplify the implementation of these workflows on HPC infrastructures. It combines a library, the BioExcel Building Blocks (BioBBs), that allows scientists to implement biomolecular pipelines as Python scripts, and the PyCOMPSs programming framework which allows to easily convert Python scripts into task-based parallel workflows executed in distributed computing systems such as HPC clusters, clouds, containerized platforms, etc. Using this methodology, we have implemented a set of computational molecular workflows and we have performed several experiments to validate its portability, scalability, reliability and malleability.This work has been supported by Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 under contract PID2019-107255GB-C21, by the Generalitat de Catalunya under contracts 2017-SGR-01414 and 2017-SGR1110, by the European Commission through the BioExcel Center of Excellence (Horizon 2020 Framework program) under contracts 823830, and 675728. This work is also partially supported by the CECH project which has been co-funded with 50% by the European Regional Development Fund under the framework of the ERFD Operative Programme for Catalunya 2014-2020, with a grant of 1.527.637,88€.Peer ReviewedPostprint (author's final draft

    High-Throughput Prediction of the Impact of Genetic Variability on Drug Sensitivity and Resistance Patterns for Clinically Relevant Epidermal Growth Factor Receptor Mutations from Atomistic Simulations

    Get PDF
    Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations

    Combined burden and functional impact tests for cancer driver discovery using DriverPower

    Full text link
    The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery

    Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig

    Full text link
    The type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3-5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes

    Integrative pathway enrichment analysis of multivariate omics data

    Full text link
    Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations

    Pre-exascale HPC approaches for molecular dynamics simulations. Covid-19 research: a use case

    Get PDF
    Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excel-lence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics.European Commission (BioExcel-2project), Grant/Award Number: 823830; Instituto de Salud Carlos III, Grant/AwardNumber: PT17/0009/0007; Ministerio de Ciencia e Innovación, Grant/Award Numbers: PID2020-116620GB-I00, RTI2018-096704-B-100.Peer ReviewedPostprint (author's final draft
    corecore