
The BioExcel methodology for developing dynamic,
scalable, reliable and portable computational

biomolecular workflows
Jorge Ejarque∗, Pau Andrio∗, Adam Hospital†, Javier Conejero∗,

Daniele Lezzi∗, Josep LL. Gelpi∗‡, Rosa M. Badia∗
∗Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
†Institute for Research in Biomedicine (IRB), Barcelona, Spain

‡Dept. Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
jorge.ejarque@bsc.es, pau.andrio@bsc.es, adam.hospital@irbbarcelona.org, francisco.conejero@bsc.es,

daniele.lezzi@bsc.es, josep.gelpi@bsc.es, rosa.m.badia@bsc.es

Abstract—Developing complex biomolecular workflows is not
always straightforward. It requires tedious developments to
enable the interoperability between the different biomolecular
simulation and analysis tools. Moreover, the need to execute
the pipelines on distributed systems increases the complexity
of these developments. To address these issues, we propose a
methodology to simplify the implementation of these workflows
on HPC infrastructures. It combines a library, the BioExcel
Building Blocks (BioBBs), that allows scientists to implement
biomolecular pipelines as Python scripts, and the PyCOMPSs
programming framework which allows to easily convert Python
scripts into task-based parallel workflows executed in distributed
computing systems such as HPC clusters, clouds, containerized
platforms, etc. Using this methodology, we have implemented
a set of computational molecular workflows and we have per-
formed several experiments to validate its portability, scalability,
reliability and malleability.

I. INTRODUCTION

Computational workflows are one of the most used tools
to assemble and run simulations of different scientific fields
as climate predictions, bioinformatics, engineering, etc. Re-
searchers can compose their applications, usually made of
pieces of code available in libraries and binaries, using a tex-
tual or graphical representation of the dependencies between
those parts, and let the runtime of the workflow management
system to orchestrate the execution on a given computational
platform. In particular, HPC systems are becoming more
attractive for the execution of workflows that traditionaly
have been executed on distributed systems as grids or clouds,
because they can have tasks that require a certain degree
of massive parallelism (i.e., OpenMP/MPI tasks, GPUs). The
trend is to have complex HPC systems built on hybrid archi-
tectures that combine traditional processors with accelerators
and other devices. On top of the computing complexity, the
packaging of workflows is an additional issue, with containers
becoming a popular way to distribute and deploy applications.

To address the issues above, it is a must to have a system
that can offer a simple interface for the composition of appli-
cations components which are able to transparently manage
their execution, adapting them to the different capabilities

of heterogeneous computing and to the dynamicity of the
computational load.Moreover, the computation requirements
of these workflows impose to scale their execution to a large
amount of resources and to provide reliability mechanisms.

This paper presents a methodology for defining and or-
chestrating biomolecular simulations on HPC infrastructures
that satisfies the above mentioned requirements. It combines
a software library developed by the BioExcel Centre of
Excellence, BioExcel Building Blocks (BioBBs) [1], with a
workflow programming framework, PyCOMPSs [2] [3]. On
the one hand, the BioBB library allows scientist to implement
pipelines as Python scripts that automatize the various steps
of Molecular Dynamics (MD) simulations that are performed
manually in many cases. On the other hand, PyCOMPSs
converts Python scripts into task-based parallel workflows
and orchestrates the execution of the computational tasks
in resources of distributed computing systems such as HPC
clusters, clouds or containerized platforms [4]. Using this
methodology, we have implemented a set of computational
molecular workflows and performed several experiments to
validate its portability, scalability, reliability and elasticity.

The paper is structured as follows: Section III describes
the proposed methodology; Section IV presents the workflows
implemented adopting this methodology; Section V reports the
validation of the features provided by the presented method-
ology; Section II presents the state of the art and related
work on topics involved in the proposed research. Finally,
Section VI draws the conclusion and proposes guidelines for
future research in this topic.

II. RELATED WORK

The use of computational workflows has become ubiquitous
for data analytics in the field of bioinformatics since the last
decade. In the literature, more than 200 workflow systems [5]
can be found, targeting specific scientific domains, different
execution models and usability approaches. Workflow systems
can be classified according to the model used to define the
tasks and the data dependencies and to the characteristics
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of the engine that executes the workflow on the computing
platform. With relation to the tasks definition features, some
frameworks allow to explicitly define the workflow through
a recipe file or a graphical interface while others permit the
users to program their applications and let the runtime build
a dependency graph from the user code. Another relevant
characteristic for the classification of these frameworks is the
level of integration with the different computing platforms as
distributed environments (such as grids, clouds, and clusters),
and HPC systems with multi-core architectures and accelera-
tors (such as GPGPUs).

Amongst all these tools, in this paper we focus on the
features that are more convenient for the orchestration of
molecular dynamics simulations, taking into account interoper-
ability across a variety of software and hardware environments,
scalability, and reproducibility. In particular, we consider HPC-
focused workflow managers that can compose and run work-
flows with advanced features as elasticity, adaptability, and
fault tolerance.

Taverna [6], [7], Kepler [8], [9], Galaxy [10], [11] are
well known graphical environments for the composition of
workflows that can be stored and shared with other users
of the community. These graphical environments facilitate
the design of simple workflows, but the implementation of
complex dynamic algorithms is difficult.

Other frameworks provide more generic interfaces to ex-
press the components of the workflow. Toil [12] is a Python
workflow engine focused on the execution of pipelines.
Pipelines are defined as jobs that can contain children jobs
and follow-on jobs to explicitly force the synchronization of
the execution. Nextflow [13], [14] provides a fluent DSL to
implement and deploy scientific workflows and allows the
adaptation of pipelines written in the most common scripting
languages.

More bioinformatics specific environments have been re-
cently developed. Crossbow [15] is a Python-based toolkit
for workflow construction and execution, aimed mainly at
Crossbow clusters but more generally at distributed comput-
ing environments. It provides an easy entry to cloud-based
computing for biomolecular simulation scientists. Crossbow
shares many of its design aspects with Parsl [16]. It provides
tools to wrap Python functions and external applications (e.g.,
legacy MD simulation codes), in such a way that they can
be combined into workflows using a task-based paradigm.
Crossbow uses Dask [17] Distributed as the task scheduling
and execution layer.

RADICAL-Cybertools [18] enables the execution of
ensemble-based applications on a variety of high performance
computing infrastructures. An increasing number of scientific
domains are adopting and benefiting from ensemble-based
applications. Most notably, MD simulations are nowadays
executed as many parallel jobs of ns-length simulations rather
than a single, long, and very large MPI job. AdaptiveMD [19]
is a Python package designed to create HPC-scale workflows
(parallel tasks) for adaptive sampling of biomolecular MD sim-
ulations. AdaptiveMD is designed as a distributed application

that can be launched from a laptop or directly on an HPC
resource and asynchronously automates the workflow creation
and execution. Multiple adaptive sampling algorithms are fully
automated with minimal user input, while advanced users can
easily make modifications to workflow parameters and logic
through the Python API. Runtime adaptations include the use
of interim data as task properties such as analysis types or
parameters, and workload properties such as task count or
convergence criteria. To provide robust workflow management,
AdaptiveMD is also integrated with the RADICAL Cybertools
stack, which significantly enhances the runtime error detection
and correction functionality, but has a much higher installation
and configuration overhead.

The solution described in this paper advances the mentioned
approaches in the move to developing robust and scalable sci-
entific workflow without the requirement of deep programming
knowledge on the users. The adoption of the combination of
BioExcel BioBB and PyCOMPSs provides powerful features
which simplify the development and executions of complex
bio molecular workflows combining several types of hetero-
geneous tasks running in parallel on thousands of computing
cores. Graphical workflow systems like Galaxy and KNIME
have generally limited support for using HPC and HTC
compute infrastructure in combination with high-performance
codes like GROMACS, while our solution provides a solid
solution for the execution of applications on a lot of computing
backends without the need of adapting the code to a specific
one.

III. METHODOLOGY

Joining different biomolecular tools in a complex pipeline is
not always straightforward. It requires tedious developments to
enable the interoperability between the different biomolecular
simulation and analysis tools. Moreover, the need to execute
the pipelines on distributed systems increases the complexity
of these developments. Figure 1 provides an overview of the
methodology proposed by the BioExcel Center of Excellence
to simplify the development of dynamic, scalable, reliable and
portable computational biomolecular workflows for distributed
computing infrastructures. With this methodology, workflows
are developed as simple Python scripts using reusable and
extensible modules. The inputs of these workflows are two
configuration scripts: one to configure the different workflow
modules to setup the biomolecular system to be evaluated
(mutations, number of simulation steps, etc.) and another one
to indicate the properties related to the specific computing
infrastructure for a specific execution (number of cores per
node, gpus, etc.). The modules used inside the workflow
are composed of two layers: the first layer is provided by
the BioExcel Building Blocks (BioBBs), a software library
designed to tackle the interoperability problem thanks to a
simple wrapping approach. BioBBs are a collection of small
wrappers written in Python where each building block en-
capsulates software components and provides a well-defined
interface for input, output, configuration, and provenance. A
standardised syntax is used in all the building blocks, with
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(a) Development (b) Execution

Fig. 1: Methodology overview

each of the wrappers internally performing the necessary
format conversions for input and output, and launching the
tool which runs unaltered. With this design, a large set of
biomolecular tools such as GROMACS [20] (MD), HAD-
DOCK [21] (Docking) or PMX [22] (Free energy calculations)
can be executed using an homogeneous syntax, also providing
a uniform and stable interface with enough information to
plug the components into interoperable workflows as simple
Python scripts. To transparently integrate the BioBBs with
Workflows Management System, we propose a BioBB WMS
Adapter layer, which is implemented as a set of decorators
which interacts with the management system that takes care of
the execution of the workflows. This adaptor layer transforms
the local calls to the BioBBs into remote asynchronous calls.
In this work, we have used PyCOMPSs to implement the
adaptation layer. PyCOMPSs provides a programming model
and a runtime system which allows developers to easily
convert a sequential Python script to parallel workflows for
distributed computing environments hiding the complexity of
the parallelization and of the execution management. Next
paragraphs provide more details about how this methodology
provides different functionalities.

A. Programmability, reusability and portability

Figure 2 shows a code snippet to explain how workflows
are developed with this methodology. On the left side of
the figure, we can see a molecular dynamics setup workflow
developed as a simple Python script where the executions of
the computational biology tools are modelled as invocations
to standard Python methods. These methods are provided by
the BioBB libraries so developers do not need to implement
them. They only need to import the modules of the tools
they want to use in their workflows. In the right side of
the picture, we can see a snippet of this BioBB module.
The Python method definition is used as a common interface
where the first parameters indicate required data inputs and
outputs, and the properties parameter is a Python dictionary
indicating the configuration of the execution of the tool. The
body of the Python method contains the implementation while
the decorators on top of the function are the PyCOMPSs
annotations that enable the parallelization and execution of
the BioBBs modules in the different computing nodes. All

the BioBB methods are annotated with the task decorator
which is also used to indicate the direction of the BioBB
parameters. Every time a BioBB is invoked in a workflow,
a task is created by the PyCOMPSs runtime that analyses
the dependencies between the different BioBB according to
the indicated direction. If the task is free of dependencies
the BioBB execution will be scheduled and asynchronously
executed in a computing resource. In this way, PyCOMPSs
hides the complexity of the parallelization and the execution
distribution of the workflow. Moreover, note that the workflow
code is infrastructure agnostic, because the developer does not
need to specify details of the infrastructure in the code that can
be executed in different infrastructures without modifications.

B. Multi-level parallelism

Some computational biology tools are internally parallelized
either to use different CPU cores in a single node (such as
threads or OpenMP), across multiple nodes (such as MPI)
or as a combination of both (MPI+openMP). It must be
indicated in the workflow manager system in order to allocate
the necessary resources for the execution. In our approach,
this information is provided by adding decorators in the
adapter part of the BioBB (@multinode and @constraint).
Figure 3 shows a code example in the case of a GROMACS
mdrun simulation. The multinode decorator indicates that the
execution is using several nodes and the constraint decora-
tor indicates the number of CPU or GPUs to use in each
node of the execution. The values for these decorator are
obtained from a set of environment variables defined in the
environment configuration file of the workflow according to
the computing platform capabilities. With this information,
the PyCOMPSs runtime ensures the proper allocation of the
required resources to perform the computation(via taskset,
OMP NUM THREADS, CUDA DEVICE,...)

C. Reliability

Computational biomolecular workflows are long lasting
analyses that perform large amounts of simulations. Some of
these simulations could fail or take too much time to get to
a solution. However, the kind of analysis performed in these
types of workflows can reach a solution even if there are sim-
ulations that fail. To manage this kind of features, PyCOMPSs
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Fig. 2: Workflow implementation example. The left-hand side of the picture shows a code snippet of a workflow invoking
different BioBB as standard python functions. The right-hand side of the picture shows how a BioBB and its WMS adapter is
implemented.

@multinode(computing_nodes = '$TASK_NUM_NODES')
@constraint(processors=[
{'processorType':'CPU','computingUnits':'$TASK_NUM_CPUS'},
{'processorType':'GPU', 'computingUnits':'$TASK_NUM_GPUS'}
])

@task(...)
def mdrun(...):

...

Fig. 3: Decorators to indicate different levels of task paral-
lelism.

provides additional properties in the task decorator to indicate
how to proceed if the computation of this task fails or takes
longer than expected [23]. These properties are included in
the adaptor layer as shown in Figure 4. On the one hand, the
time out property indicates the maximum duration of the task.
If a task is exceeding the indicated duration, its execution is
cancelled and considered as a failure. On the other hand, the
on failure property indicates to the PyCOMPSs runtime what
to do if a task of this type fails. In this case, the runtime
will ignore the failure and the output data will be set to the
specified default values (such as an empty file, None values,...)

@constraint(...)
@multinode(...)
@task(..., on_failure='IGNORE', time_out='$TASK_TIMEOUT')
def mdrun(...):

...

Fig. 4: Decorators to indicate reliability features.

Beside this functionality, we have also implemented a
stop/restart mechanism to allow users to restart a workflow
run without requiring to execute all the tasks again. This
functionality is useful when executions exceed the wall clock
limit of the queue system. To perform a safe stop, the runtime
catches the signals sent by the queue system manager for
cancelling the processes of the execution. When the signal
is received, all the running and pending tasks are cancelled
and the data generated by the already executed tasks is moved
to its final location. When the execution is restarted and the
workflow reaches the point to invoke a task, the adapter part
of the BioBBs checks if the generated data is already available

and that is not empty. If this data already exists, it skips the
execution, otherwise, if it does not exist or it is empty it creates
a task in the runtime to perform the missing computation.

D. Malleability

As stated in the introduction, the computing load of the
workflows during the whole execution is not homogeneous;
depending on the different phases, the workflow will use more
or less computational resources. In task-based programming
models like PyCOMPSs an application can be represented as a
Direct-Acyclic-Graph (DAG) where nodes represent tasks and
arrows data-dependencies between the tasks. This DAG also
inherently stores information about the computational load
required by the application at any point of the execution. The
runtime can know which is the maximum achievable paral-
lelism for a certain execution by analysing the generated graph
and it can identify, by considering the available resources,
whether the application has potential for further parallelism or
it is under-utilising the current resources. For instance, when
there are lots of dependency-free tasks pending for execution,
the application could run faster by allocating more resources.
However, when there are more resources than available ready
tasks, we will under-utilise the system and some of the nodes
will be idle or not running at the maximum capacity.

To overcome these situations, the runtime has an auto-
scaling module which is able to scale up and down the com-
puting resources used by the application according to its de-
mands. During the application execution, the runtime generates
profiling information about the previous tasks execution, in-
cluding statistical information about the duration of each task.
Combining this information with the task dependency graph,
the PyCOMPSs runtime periodically estimates the remaining
parallel workload (PW ) as a sum of all the dependency-free
task resource requirements (RTreadyi

) multiplied by their mean
execution time (ETTreadyi

).

PW =
∑

∀Tready

RTreadyi
ETTreadyi

(1)
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In the same way, the runtime can estimate the current infras-
tructure capacity (IC) with the sum of all resource capabilities
(CResourcei ) multiplied by the mean execution time to get a
new resource from the infrastructure provider(RT ).

IC =
∑

∀Resource

CResourceiRT (2)

These metrics are useful to determine when to add or
remove a resource. If the estimated parallel workload is higher
than the infrastructure capacity during the time to create a
resource, it indicates that the application has enough load to be
sped-up with a new resource. On the contrary, if it is smaller,
it means that the application is starting to under-use resources.

If the first situation is produced, the runtime contacts the in-
frastructure resource manager to request a new computational
node and once the new resource is available, the runtime starts
a worker process which spawns the execution of tasks in the
new resource.

If the second situation is produced, the runtime has to decide
which compute node is the best candidate to be removed.
To do so, the runtime calculates the number of underused
resources as the difference of the parallel load and the current
infrastructure capacity. Then, it ranks the computing nodes
by the capacity and the current running load (number of
running tasks and estimated time to finish). Based on this rank,
the runtime selects the node which contains the underused
resources and which has the minimum running load. Once
a node is selected, the runtime removes the node from the
worker pool and once all the running tasks have finished, it
contacts the infrastructure resource manager to release it.

In previous versions of PyCOMPSs [24], the auto-scaling
features were applied to scale service executions in cloud en-
vironments, where the runtime contacts the resource provider
API to create and destroy virtual machines. In this case, we
have extended to auto-scale scientific workflows in clusters.
Figure 5 illustrates how the runtime interacts with the SLURM
resource manager to achieve the auto-scaling feature in clus-
ters. To scale-up resources, the runtime requests an extra node
by submitting a new job with the sbatch command indicating
with the dependency flag that this job expands the main
application job. This job will inherit the same QoS from the
expanded job and will execute a COMPSs worker process in
the requested extra node. The runtime detects when the job is
running by polling SLURM with the squeue command. Once it
is ready, the allocation of the new job is updated with the new
resource with the scontrol update job command. In the case
of scaling-down, the runtime contacts the SLURM manager
to cancel the job which contains the node to remove (with the
scancel command) and updates the main application job with
the scontrol update job command.

IV. WORKFLOWS

To validate the functionalities like infrastructure agnosticity,
scalability, resiliency, and malleability, we have implemented
several workflows following the proposed methodology [25].
These workflows have been designed within the BioExcel

(a) Resource scale-up

(b) Resource scale-down

Fig. 5: Diagram about how the COMPSs runtime interacts with
SLURM managed clusters to implement the resource elasticity
in the workflow execution.

CoE and applied to scientific use cases [26] where we have
evaluated different molecular systems. These workflows and
systems are briefly introduced in this section.

A. Mutations MD Setup Workflow

The Mutations MD setup workflow is an automated protocol
to model residue mutations in 3D protein structures detected
from genomics data, and prepare and run MD simulations for
all the generated structures. The pipeline receives a PDB file
(wild type protein 3D structure) and a set of mutations as
input. Next, it prepares and runs MD simulations for each of
the systems, thus obtaining static information (an ensemble
of modelled structures for each of the protein variants), and
dynamic data (trajectories for each of the protein variants).
Both types of information can later be used in a comparative
study. The workflow flowchart is represented in Figure 6.
The structure of the workflow makes it a perfect case to
study parallel work distribution, with a variable number of
independent MD simulations to run, depending on the input
number of mutations to model. Besides, the main tool used in
the workflow (MD simulations) is implemented in various pro-
gramming schemes, including GPU cards and openMP/MPI
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Fig. 6: Mutation MD Setup flowchart

regimes, which makes the workflow also a perfect case to
study the capacity to deal with different hardware architectures
and parallelism levels.

B. Binding Affinity Workflow

The Binding Affinity workflow is an automated protocol to
evaluate changes on binding affinity between a protein and its
receptor upon residue mutations. The workflow uses the PMX
tool [22] to generate alchemical residues, and GROMACS [20]
to run a large series of short MD simulations required
(thermodynamic integration, TI). The workflow flowchart is
represented in Figure 7. Briefly, the method starts with two
trajectories (wild type, mutated) coming from equilibrium
MD simulations. From these trajectories, two different en-
sembles of structures are extracted and used to prepare and
run alchemical perturbations from the wild type protein to
the mutated protein (forward) and from the mutated protein
to the wild type protein (reverse). The final output of the
workflow are two histograms built with the results of the
forward and reverse simulations. The intersection between the
two histograms defines the final ∆G of binding.

Fig. 7: Binding Affinity flowchart

The structure of the workflow makes it a perfect case
to study PyCOMPSs fault tolerance, with a large number
of complex independent workflow branches, with a certain
probability of failure. In a typical run, 500 structures from
each input ensemble are used to compute thermodynamic
integrations, summing up to 1000 independent sub-workflows.
The probability of failure for some of the workflow branches
overall is high, but, unless the number of branches failing
is high, it is not affecting the final value. Furthermore, this
pipeline needs a considerable amount of computational re-
sources and time, with the consequent risk of job cancelling,
due to wall clock time or infrastructure downtime. Here the
resilience properties to ensure the computation can be restarted
and malleability properties to speed up the computation using
more resources if available are very convenient.

C. Molecular Systems

Systems used in this study were chosen due to their interest
in pharmaceutical research, and are briefly presented in this
section.

The first system is the duodecimal peptide PMI, known to
compete with p53 for binding to MDM2 or MDMX. p53 is
critical for maintaining genetic stability and preventing cancer.
MDM2 (E3 ubiquitin ligase) and its homologue MDMX act
as negative regulators of p53. Designing inhibitors of MDM2
or MDMX is an attractive strategy for enhancing p53 activity
and thus achieving the desired antitumoral therapeutic effect.
The affinity of the peptide PMI is roughly two orders of
magnitude higher than that of the same length p53 peptide.
High-resolution crystal structures of both proteins with PMI
are available (PDB identifiers: 3EQS and 3EQY, respectively).
Kd dissociation constants of PMI and p53 for MDM2 and
MDMX have been experimentally derived, and an additional
Alanine scanning is also available for these proteins. All this
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experimental information can be used to test our methods to
theoretically predict binding affinity.

The second system is the well-known SARS-Cov-2 Spike
protein, and in particular, the molecules involved in the
COVID-19 infection mechanism, the Spike Receptor Binding
Domain (RBD) and the Human ACE2 (hACE2) receptor.
High-resolution crystal structures of the protein complex are
available (PDB identifier: 6VW1). Genetic changes in SARS-
CoV-2 variants (α, β, γ, δ, o) are translated mainly into
single amino acid mutations in the RBD domain of the viral
Spike protein. The impact of these genetic changes can be
determined using free energy calculations on the binding of
RBD to the host receptor proteins. The system was chosen
for its importance in the field, but also for its considerable
complexity, both in size ( 65000 atoms) and in the number of
charged (ionizable) amino acids.

V. VALIDATION

This section describes the experiments performed to validate
the described capabilities and the analysis of the results.
These experiments consist of the execution of the implemented
workflows configurations in a set of supercomputers from
the PRACE partnership and Spanish Supercomputing Network
(RES). The description of these clusters are described in
Table I

TABLE I: Supercomputers description

Supercomputer Computing Node Description
MareNostrum (MN) 48 core Intel Skylake CPU
Minotauro (MT) 16 core Intel Haswell CPU + 4 Nvidia K80 GPU
Tirant 16 core Intel Sandybridge CPU
Discoverer 128 core AMD EPYC 7H12 CPU

A. Portability

To validate the portability features, we have executed the
Mutations MD setup workflow with the MDM2-PMI Ala-
nine Scanning system which executes 8 Molecular Dynamic
pipelines using GROMACS. It has been executed in three
supercomputers: MareNostrum (MN), Tirant, and MinoTauro
(MT). Table II shows the results for the different executions.
The first two columns show the selected supercomputer and
the number of nodes used in each execution and the specified
constraints for the MD task. Then, the third column shows
the elapsed time to execute the whole workflow, and the last
column shows the performance reported by GROMACS to
compute the MD simulation. In this table we can observe
that the workflow execution is adapted to the computing
infrastructure reaching the expected GROMACS performance
according to the available computing resources.

TABLE II: Execution time in different supercomputers

Machine MD Task Conf. Exec. Time GROMACS perf.
MN (8 Nodes) 48 CPU cores 97.5 min. 162.357 ns/day
MN (16 Nodes) 96 CPU cores 64.0 min. 250.787 ns/day
Tirant (8 Nodes) 16 CPU cores 372.8 min. 39.546 ns/day
MT (2 Nodes) 4 CPU + 1 GPU 197.5 min. 77.650 ns/day

B. Scalability

To validate the scalability of the methodology, we have
performed a strong and weak scaling analysis for the Binding
Affinity workflow using the SARS-Cov-2 Spike protein system
in the Dicoverer supercomputer. Figure 8 shows the results of
the strong scaling experiment. In this experiment, the workflow
has been configured to evaluate 512 structures for each forward
and reverse ensembles. The same workflow configuration has
been executed with a different number of resources using a
Discoverer node (128 cores) for each simulation. For each
workflow execution, we have measured the execution time of
the workflow computation discarding the runtime initilization
and finalization, and we have computed the speed-up. The
results show a good scalability up to 512 nodes (65,536 cores).
It is close to the ideal until 256 nodes and reaches a speed-up
of 311 for 512 nodes.

Fig. 8: Strong scaling analysis for Binding Affinity Workflow.
(The baseline is the execution time using a single node)

Fig. 9: Weak Scaling analysis for the Binding Affinity. (The
baseline is the execution using a single node)

To complete the scalability analysis, we have designed a
weak scaling experiment. In this case, we have used the same
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Binding Affinity workflow and the same system (SARS-Cov-
2 spike protein) but the number of structures to evaluate is
increased by the same scale as the resources used for the
execution, expecting to have a constant execution time. We
have measured the execution time and we have computed
the efficiency. The results of this experiment are presented
in Figure 9 where we can see the efficiency is degraded
with the amount of resources. For 512 nodes, the largest
number of nodes, we have an 80% of efficiency. The speed-
up and efficiency are diverging from the ideal case for two
reasons: first, the workflow management overheads, such as
task scheduling and data transfers, are growing with the
number of tasks and nodes; and second, the Binding-affinity
workflow is not completely embarrassingly parallel. Figure 10
shows an the generated graph for a simple case for 2 structures
per ensemble. In this graph, we can observe that there is
an initial phase (blue and white tasks) with a very limited
parallelism (2 parallel tasks) and a the last phase whose
execution is sequential.

Fig. 10: Generated task graph for 2 structures per ensemble.
Nodes in the graph represents tasks identified by the Workflow
Management System and arrows represent the detected data
dependencies

C. Reliability

To validate the reliability features, we have executed the
Binding Affinity workflow in the MareNostrum supercom-
puter. In this case, we have included the evaluation of some
of the structures that produce failures in the simulations.
Figure 11 shows the plot of two analyses performed by the
workflow. The left-side of these plots contains a representation
of the values obtained for the simulations performed with

the different structures for the forward (green) and backward
(blue) ensembles. Note that there are some empty values which
correspond to the failed simulations (red circles). According to
the policy indicated in the on failure property, these failures
have been ignored and empty values have been set, allowing
the finalisation of the workflow execution without altering the
results of the analysis.

D. Malleability

To validate the malleability features of the proposed
methodology, we have executed the Binding affinity workflow
in the MareNostrum supercomputer with a malleable configu-
ration, with 6 static computing nodes and 7 elastic computing
nodes. Figure 12 shows the workload estimated by the runtime
(blue) during the execution of the workflow, and the used
amount of resources (red). During the first phase where setup
tasks are quite small, the runtime decides to only use the static
nodes. In the second phase where only the long simulations
are pending the workload is increasing, so the runtime requests
extra computing nodes that are released at the end of the
execution, where the pending tasks can be finished with the
static resources.

VI. CONCLUSIONS

The paper has presented a methodology to reduce the
gap between biomolecular research and the high performance
computing world. The motivation for this work comes from
the analysis, performed in the context of the BioExcel project,
of the current situation around the execution of biomolecular
workflows in supercomputing facilities, and it has developed
around two pillars: usability and efficiency. The methodology
consists of the combination of two main components: First, a
python library of platform agnostic building blocks for molec-
ular dynamics (BioBB) has been used to address the usability
requirement. A wide variety of complex pipelines can be
developed as simple python scripts. The second component of
the methodology is the PyCOMPSs task based programming
model. It allows to convert python scripts in parallel workflows
whose execution is distributed in different computing nodes
with a minimal impact on the code (just requiring to add
simple annotation on top of the BioBB method definitions).

We have described how the proposed methodology supports
different types of simulations and adapts its execution to the
available computing resources as well as other features like
reliability and malleability. The validation of these features
have been performed with two workflows implemented using
the proposed methodology. These workflows have been ex-
ecuted in different premises with different processors to see
how the execution is making use of the available hardware in
each case. We have also verified that the workflow execution
is finished even when some tasks are failing and the runtime
system can adapt the infrastructure to the workload generated
by the workflow execution. Finally, a scalability analysis has
been performed executing the workflow with up to 65,536
cores, demonstrating that the workflows developed with this
methodology can be easily scaled to a large number of nodes
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Fig. 11: Binding Affinity workflow results with failures. The red circle indicates the simulations with empty results which are
produced by the failures in the workflow

Fig. 12: Malleability with the Binding Affinity workflow. Blue graph shows the parallel workload estimated by the runtime
and the red line shows the number of resources assigned to the workflow execution.

and that the optimal configuration of the execution parameters
can be obtained without modifying the user code.

Regarding future work, we will work on simplifying the
development of more complex workflows and extending the
BioBB library with the introduction of data analytics in the
workflows. In particular, we will investigate how to couple the
adoption of High Performance Data Analytics (HPDA) with
High Performance Computing (HPC) techniques. The use of

HPC parallel processing to run powerful data analysis software
tools opens the possibility to examine massive datasets within
a reasonable time. A set of HPDA building blocks will
be developed, starting with a recently developed library for
distributed computing integrated on top of the PyCOMPSs
framework and focused on machine learning [27].
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