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ABSTRACT 
 

Mutations in the kinase domain of the Epidermal Growth Factor Receptor (EGFR) can be drivers of cancer 
and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A 
priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy 
and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this 
end, we explored a variety of in silico methods, from sequence-based to ‘state-of-the-art‘ atomistic 
simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation 
appears, or the impact of such mutations on drug activity. Low-level simulation methods provide limited 
qualitative information on regions where mutations are likely to cause alterations in drug activity, and they 
can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on non-
equilibrium alchemical free energy calculations show predictive power. The integration of these ’state-of-the-
art‘ methods into a workflow implementing an interface for parallel distribution of the calculations allows its 
automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.  
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INTRODUCTION 
 
EGFR (Epidermal Growth Factor Receptor) overexpression, or certain mutations in both ecto-domain or 
Tyrosine Kinase domain can lead to impaired activation of its tyrosine kinase (TK) activity, thereby triggering 
the hallmarks of cancer, i.e., increased proliferation and survival of tumour cells, aggressive invasion and 
metastasis, evasion of cell death, and increased metabolism 1, 2. Unregulated EGFR over-activity is present in 
many types of cancer, especially in those with the poorest prognosis. For example, over 60% of patients with 
metastatic non-small-cell lung cancer (NSCLC) overexpress EGFR 3, 4, and around 10-30% 5-7 of these 
individuals have mutations leading to ligand-independent activation of EGFR TK. Some of these activating 
mutations are located in the extracellular domain and drive a conformational change from the inactive to the 
active state, mimicking that induced by the natural ligand (the epidermal growth factor (EGF) 8). Others are 
located at the kinase domain and trigger changes in the ATP-binding pocket that alter the ‘on-off’ equilibrium 
of the enzyme 9-13, probably by destabilizing the ’inactive state‘ with respect to the ’active one‘ 14, 15. 
Current treatments for cancers involving EGFR dysregulation are based on either monoclonal antibodies 
directed against the cognate ligand EGF or EGFR’s homo- or heterodimerization, or on inhibitors of TK 
activity. Various structurally related FDA-approved small molecules either reversibly or irreversibly compete 
with the natural substrate ATP to inhibit TK activity. Several of these drugs are used to treat non-small cell 
lung, pancreatic, colorectal, head and neck, and breast cancers 11, 16, 17. The first TK inhibitors (TKIs) with 
clinical benefits were Erlotinib (Tarceva®) and Gefitinib (Iressa®) 18-21, and third-generation Osimertinib 
22, 23, which forms a covalent bond with C797 after an initial non-covalent binding. Unfortunately, while these 
drugs show good antineoplastic activity at the beginning of the treatment, drug resistance appears as cancer 
progresses and tumour cells accumulate mutations. This resistance is triggered by the emergence of 
inactivating mutations 24, which rescue the ’dysregulated‘ activity of EGFR 25-30. Several drug-inactivating 
mechanisms have been proposed, including, among others, the activation of alternate proteins downstream of 
EGFR signalling, the activation of proteins that feed into the EGFR signalling cascade, and a decrease in the 
affinity of TKIs 31.  

While resistance driven by the rewiring of cellular networks is independent of the molecular details of the 
EGFR inhibitor and can be tackled by multidrug therapies 32, resistance caused by mutations with decreased 
inhibitor affinity are dependent on the fine details of the drug and the mutation and are susceptible to 
theoretical predictions by means of simulation methods. Here we focus on mutations in the kinase domain that 
can affect inhibitor binding in a drug-specific manner. In fact, first-generation ATP-competitive inhibitors 
quickly faced TK mutation-induced treatment resistance related to a decrease in inhibitory potency, which 
drove the development of second- and third-generation inhibitors 33. Unfortunately, while improving 
resiliency to mutations, second-generation inhibitors show limited efficacy in circumventing some mutations, 
and even third-generation inhibitors are susceptible to inactivating mutations that affect the vicinity of the 
ATP binding site 34. 
Improvements in EGFR-TKI-based therapies would require detailed knowledge of the impact of mutations on 
the activity of the drugs. Patient genotyping 35, followed by in silico predictions and in vitro validation, could 
help oncologists ascertain whether mutations render the kinase domain (KD) of EGFR resistant to therapeutic 
drugs. Furthermore, in silico prediction of the impact of mutations on kinase inhibition would not only allow 
an understanding of the impact of known mutations on existing drugs but would also help to predict resistance 
and implement modifications in the therapy before relapse happens. Even more exciting is that in silico 
mutagenesis and binding predictions would allow pharmaceutical laboratories to anticipate inactivating 
mutations for a drug candidate before it reaches the market, thereby helping to stratify patient cohorts in 
clinical trials and triggering the development of a modified drug candidate able to evade inactivating 
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mutations. To this end, a reliable simulation-based pipeline has to be developed and implemented in a user-
friendly manner for non-experts.  
Here we present a multilevel and automated approach that allows the in silico prediction of the effect of 
mutations on the binding properties of TKIs targeting EGFR. A variety of sequence-based methods helped to 
detect some trends of drug-affecting mutations but are far from having any predictive power. Simulation 
methods explicitly accounting for the structural and dynamic properties of the protein and the drug-protein 
complex achieve predictive power ranging from 70% for the lower-level methods to an impressive 100% for 
the most elaborate methods based on molecular dynamics and non-equilibrium free energy calculations. The 
implementation of these state-of-the-art techniques in an automated workflow involving highly parallel 
computers allows non-expert users to perform these calculations in hours with moderate computational 
resources, minutes with a pre-ExaScale parallel supercomputer, and seconds with an ExaScale one.  
 

METHODS 
 
Dataset: Considerable data on somatic cancer mutations have been gathered via sequencing projects. For this 
study, sequence variants found in samples from cancer patients were extracted from the International Cancer 
Genome Consortium 36 (ICGC; https://dcc.icgc.org/), the Catalog Of Somatic Mutations In Cancer 37 
(COSMIC; https://cancer.sanger.ac.uk/cosmic), and the Clinical Variants 38 (CLINVAR; 
https://www.ncbi.nlm.nih.gov/clinvar/) databases. For EGFR, the ICGC database yielded 5710 somatic 
mutations, of which 5158 were substitutions, including 402 missense substitutions. Only variants leading to 
changes in the anticancer activity of TKIs were retained (Table 1). We searched the literature for the annotated 
origin of resistance (Suppl. Table S2), and mapped the key regions for binding and activity onto the structure 
of the TK domain, which comprises the nucleotide-binding loop (P-loop), the catalytic loop (C-loop), the αC-
helix at the dimerization interface, the activation loop (A-loop), the hinge, and the DFG triad (see Figure 1).  

Sequence analysis: We used sequence alignments to determine whether mutations affecting drug-binding are 
located in variable or conserved regions and whether such mutations are common even in the absence of the 
evolutionary pressure of the drug. To this end, we extracted the sequences of 94 human TKs from KinBase 39, 
aligning them with ClustalW as implemented in the msa R package 40. ClustalW 41, 42 is one of the widest used 
programs for multiple alignment, it works generating pair-alignments from which phylogenetic trees are 
created and used as reference for the multiple alignment. Sequence variability at each position of the TK 
domain was determined from the Shannon entropy score, as described elsewhere 43 (see Eq. 1): 
 

𝐻 = −$𝑃&𝑙𝑜𝑔*𝑃&

+
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		 (1) 

 
where the sum extends for all mutations sampled in the alignments at a given position, and 𝑃& stands for the 
probability of residue i at a given position. Non-pathological human polymorphisms mapping onto the TK 
domain of EGFR were extracted from the gnomAD database 44. 
In order to evaluate the likelihood of an aminoacid substitution (wild type à mutant) we used 20x20 
BLOSUM62 matrices 45. A high positive value of a BLOSUM62 index associated to a mutation X à Y means 
that these mutations are commonly found in proteins (in multiple alignments), while large negative values 
mean that these are rare changes in proteins (expected disruptive mutations). 
Pathogenicity analysis: We used the PMUT program 46, 47, ranging from sequence and structural information 
to the protein 48, 49, to evaluate the pathological potential of mutations affecting drug response. PMUT uses a 
large number of sequence-dependent parameters (e.g. local and global conservation, predicted structural 
elements, aggressiveness of the mutation) and a Machine Learning algorithm (Random Forest) trained to 
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distinguish between neutral and mutations associated to Mendelian diseases. It is one of the most used 
programs for pathogenicity prediction and is freely available at https://mmb.irbbarcelona.org/PMut/ 
Modelling of the complexes: We used the structure of PDB entry 4WKQ as a template, using PDB entry 
2ITY to fill the structural gaps. Both structures contain Gefitinib (Iressa®), covering residues 694 to 1020 at 
1.85 Å resolution (4WKQ), and residues 697 to 1019 at 3.42 Å resolution (2ITY). Refinement involved 
checking alternative conformations per residue in the 4WKQ parts, keeping only those with higher occupancy. 
For the crucial D855 in the DFG-motif, we chose as a starting point the side-chain orientation that forms a 
double salt bridge with the catalytic K745 and E762 in the αC-helix. The structure of the final model was 
checked using our local BioBB validation module 50. The binding geometry of Erlotinib was taken from 
4HJO, Lapatinib from 1XKK, and Osimertinib from 4ZAU. The binding geometry of Icotinib was taken 
from the BioBB AutoDock-Vina 51 module, defining the binding pocket as those residues closest to 6.5 Å from 
Gefitinib in the 4WKQ structure.  In all cases, structural water molecules present in the crystal around the 
binding site were maintained, the hydrogen atoms being oriented during the molecular dynamics (MD) setup 
procedure as discussed below. Binding interactions of the different drug molecules with the modelled structure 
of this study after minimization (relaxation of bad contacts) are shown in Suppl. Figures S1 to S5. A 
comparison between the modelled structures of this study after minimization (relaxation of bad contacts) and 
experimental structures of the PDB bearing the same mutated amino acids and ligands is also included in 
Suppl. Figure S6. 
 

 
Figure 1: Location of clinically relevant mutations in the kinase domain of EGFR. Top: TK domain sequence with the positions 
of the studied mutations highlighted. Bottom: Representation of the active centre with the studied mutations and the most important 
regions on the protein structure. Clinically Relevant Mutations: Yellow Licorice; Gefitinib (IRE): Orange Licorice; Gatekeeper: 
Black CPK; Hinge: Light Blue Cartoon; P-loop: Red Cartoon; DFG motif: Green CPK; Loop before AlphaC-helix: Dark Blue 
Cartoon; AlphaC-helix: Violet Cartoon; PDB Structure: 4WKQ as a template, 2ITY used to fill the structural gaps. The 3D 
representation can be interactively explored in the 3dRS server:  https://mmb.irbbarcelona.org/3dRS/s/MZplaW  
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Force-Field parameters: Proteins were described by the AMBER99SB-ILDN force field 52, water by the 
TIP3P model 53, and counterions by the AMBER99SB-ILDN-associated ion model. For ligands, we used our 
web-based automatic tool, taking care to define the suitable charge state of the ligands (suitable charge state 
and parameters were obtained using an automated protocol 54-56, which relies on charges determined from 
fitting to electrostatic potential, van der Waals transferred from AMBER99SB-ILDN types and GAFF 57, and 
torsions refined by an automated protocol using DFT/SCRF calculations as a reference 54-56). 
Generation of initial mutant geometries: Starting from the wild-type (WT) geometries above, the 
biobb_structure_checking module was used to create and validate the geometry of the mutants. The structure-
checking steps covered proper amide assignments, chirality, cis/trans backbone, disulphide bridges, and severe 
intra-protein clashes. Neither the WT nor any of the modelled mutants presented any major issue. In all cases, 
models were subjected to minimization, thermalization, and 50 ns equilibration before production. For each 
mutant, the residue protonation state was defined at a physiological pH of 7.4 using the PROPKA software 
(v3.1.8) 58, with reorientation of the side chains of histidine residues using the PDB2PQR (v2.1.1) webserver 
(https://server.poissonboltzmann.org/pdb2pqr) 59. 
Induced fit calculations: We used the PELE suite of programs 60 to analyse the docking of ligands to WT 
and mutant proteins in an unbiased manner. PELE uses a Metropolis-Monte Carlo/annealing protocol that 
combines ligand random moves, main chain perturbation based on normal mode displacements, and a final 
relaxation stage consisting of side-chain relaxation and global minimization. PELE uses a continuum, but 
accurate solvent, and a broad definition of the binding site. Compared with other docking algorithms it is 
slower, but allows a very exhaustive exploration of the binding landscape, being one of the most accurate 
docking-like methods in cases of induced fit. We compared the docking energies of the WT and mutant to 
detect mutation-induced changes in binding. Crystal structures (see above) for the WT and mutants were built 
using Schrodinger’s Protein Preparation Wizard 61 and Maestro 62, defining a docking sphere of a radius of 5 
Å around the ATP binding site. Defaults were used for PELE. OPLS2005 63 was used to define the energy 
functional combined with the SGB solvent model corrected for non-polar contacts 64. Rotamer libraries were 
taken from our Peleffy library. Binding poses were obtained using AdaptivePELE 65 to explore diverse binding 
poses within the docking sphere. The resulting poses were then clustered, and the most relevant ones were re-
explored. A typical PELE calculation takes around 24 hours in a 64 core Intel-based computer. 
Molecular Dynamics (MD) simulations: For each apo and holo EGFR variant, ten replicas were generated. 
Each variant was optimized to relax bad contacts and solvated in dodecahedral water boxes extending for at 
least 12 Å from any atom of the protein. Counterions (Na+ and Cl-) were added to maintain neutrality including 
additional ions to adjust to a 150 mM salt concentration. Solvated systems were then reoptimized, and slowly 
thermalized (310 K) and equilibrated, first in the NVT ensemble for 1 ns before moving to the NPT one, 
slowly removing restraints on the protein and the ligand heavy atoms for 1 ns. Each replica of the final systems 
was relaxed for 50 ns in the NPT ensemble (P=1 atm; T=310 K) before production runs (100 ns each replica), 
from which seeds for forward and reverse free energy calculations were extracted (see below). Newton’s 
equations of motion were integrated every 2 fs using LINCS 66 to maintain all bonds involving hydrogen 
frozen at equilibrium distances. Periodic boundary conditions and Particle Mesh Ewald methods 67, 68 were 
implemented to capture long-range interactions. Parrinello-Rahman thermostats/barostats 69, 70 were used to 
maintain the pressure and temperature at desired values. All MD calculations were done using GROMACS 
(v2018.4) 71. 
Interaction profiles: We used the collected trajectories of the complexes to obtain the residue-drug interaction 
energies and those residues with the strongest interactions 72, as determined from the combination of 
electrostatic (computed using Poisson-Boltzman calculations 73) and van der Waals interactions. Group 
fragmentation was done to maintain monopoles, as describe elsewhere 73. 
MMPBSA calculations: Molecular Mechanics with Solvent-Accessible Surface Area correction 74 was 
performed in pilot calculations, considering the bound and unbound state of the WT and mutant proteins and 
the standard defaults, as described elsewhere 75. 
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Machine Learning (ML) predictors. We explored the use of PremPLI 76, a method that uses a series of 
structural descriptors derived from the complex geometry and a random forest classifier to predict when a 
mutation in a protein impacts the binding of a drug. The method has been recently shown 76 to outperform 
other ML-based methods (mCSM-lig 77, Aldeghi ML1 78), and can be accessed via a public and well 
maintained website ( https://lilab.jysw.suda.edu.cn/research/PremPLI/). 
Free energy calculations: The mutation-induced change in the binding free energy for the different inhibitors 
was computed using standard thermodynamic cycles, comparing the free energy change associated with the 
mutation in the apo and drug-bound protein states (Figure 2). Individual free energies were computed via non-
equilibrium methods:  the Crooks Gaussian Intersection (CGI), Jarzinsky’s equality (JE) and the Bennett 
Acceptance Ratio (BAR) methods 80. Contrary to free energy perturbation or thermodynamic integration (TI), 
non-equilibrium methods determine the free energy of an alchemical process from the distributions of 
irreversible work caused by a system change (an amino acid mutation in our case), obtained in ’forward‘ and 
’reverse‘ directions (see Figure 3). We generated a meta-trajectory concatenating the 10 collected replicas for 
the WT and mutant in both the apo and holo states (see Figure 2), selecting 100 random configurations as 
starting points for slow-growth TI non-equilibrium perturbations using de Groot’s PMX protocol 79-81. For 
each mutation, we ran 100 (replica) x2 (wild type à mutant and mutant à wild type) x2 (bound and unbound 
states) alchemical changes. Each of the 100 perturbation TI trajectories were extended for 50 ps after a series 
of test analyses had demonstrated it to be a good compromise between accuracy and computational efficiency 
(see Suppl. Figure S7 and reference 82). The histograms of irreversible work for the forward and reverse 
transitions were calculated by the three methods outlined before (see Figure 2) to determine three independent 
estimates of the reversible free energy associated with the mutation. When a discrepancy between the three 
estimates was large (standard deviation of more than 3 kJ/mol, with one of the estimates leading to a global 
change in the predicted free energy change), simulations were extended to 500x2x2 alchemical changes to 
check for convergence between the different estimates. With this simulation set-up the major origin of 
uncertainty arises from no purely Gaussian nature of the irreversible work distribution, which challenges the 
accuracy of the CGI method. Typical CPU times for MD/PMX workflow implies around 2x130 hours in a 64 
cores computer, and thanks to the extreme parallelism provided by the workflows only 2x8 hours in a medium 
sized 1024 cores computer cluster. 
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Figure 2: TOP: Thermodynamic cycle used to determine changes in binding free energy associated with 
protein mutations. BOTTOM: Examples of histograms of works obtained by mutating one residue into another 
in apo (left) and holo (right) EGFR, respectively. Equations on the right correspond to the three methods 
considered here to derive free energies for the histograms of irreversible work (Jarzinski equality (JE; top), 
Crooks Gaussian Intersection (CGI; middle) and Bennett Acceptance Ratio (BAR; bottom). W stands for the 
reversible work associated with the Aà B mutation, P refers to the histograms (forward and reverse), and C 
is a constant defined from the A and B partition functions (see Methods).  
 
Free energy workflows: The calculations above imply the application of a myriad of tools. To use them 
efficiently, they were organized in execution pipelines (workflows) assembled using the BioExcel Building 
Blocks library 50 (abbreviated from here onwards as BioBB; https://mmb.irbbarcelona.org/biobb/; 
https://github.com/bioexcel/biobb). A new HPC-focused workflow was specifically developed for this project, 
handling all the mutations, MD setup and PMX calculations, thereby circumventing human intervention to 
prepare many thousands of individual simulations (see Figure 3). To ensure efficient usage of pre-exascale 
computational resources, the workflow was launched and controlled using the PyCOMPSs programming 
model 83, which automatically distributed the pipeline individual tasks in a parallel manner in HPC 
supercomputers. A typical run implies the use of c.a. 768 to 3,072 cores of the MareNostrum supercomputer 
at the Barcelona Supercomputing Center. The protocol has been tested in PRACE supercomputers, showing 
excellent parallelism on more than 40,000 cores. 
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Figure 3: Relative free energy calculation workflow using BioExcel Building Blocks, wrapping GROMACS and the PMX software. 
An extended figure can be found in the supplementary material (Suppl. Figure S8). 
 

RESULTS 
 
Sequence analysis: The ClustalW multiple sequence alignment (Figure 4A) suggests that drug-related 
mutations tend to be placed at conserved regions (9 out of 14 mutations sites map on regions with Shannon’s 
score H<2), in some cases in ultra-conserved positions such as 796 or 835. However, there are drug-affecting 
mutations mapping on variable positions and there are many highly conserved positions for which no such 
mutations are described. Based on sequence conservation, it is difficult to distinguish between positions where 
resistance-mutations are detected and those where a mutation induces an equal or better drug response. 
Therefore, multiple alignment analyses do not have enough predictive power to determine which positions are 
most likely to concentrate mutations affecting drug activity. The analysis of BLOSUM62 matrices 45 suggests 
that, in general, drug-affecting mutations imply moderate changes in the nature of the amino acid, and no 
disruptive mutation is detected in the list of drug-affecting mutations (Figure 4B). Interestingly, there is no 
relationship between the dramatic change induced by a mutation and its impact on drug-resistance. For 
example, the ’disruptive‘ change G719S (see Figure 4B) does not lead to resistance, and the ’mild‘ T790M 
one inactivates most of the TKIs. Inspection of BLOSUM62 matrices does not allow us to predict drug-
affecting mutations. Except for one, all drug-affecting residue changes can be explained by single nucleotide 
changes, which suggest that they appear spontaneously as human polymorphisms in the absence of drug 
pressure. However, this is not the case, as shown in Figure 4C. Thus, we can conclude that drug-affecting 
mutations are a consequence of stressed replication in cancer, which helps to accumulate mutations. Some of 
these mutations, but not all, will show positive selection as they inactivate response to the drug, thereby 
enhancing the survival of cancer cells. 
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Figure 4. TOP Shannon’s entropy on the human kinase domains (0 fully conserved, 4 fully variable). Places 
of a drug-affecting mutations are marked with circles and those leading to drug resistance are marked with 
yellow triangles; the horizontal lines correspond to average Shannon’s entropy (see Methods) in the human 
Tyrosine Kinome for all positions (magenta) and those where drug-affecting mutations are found (red). 
MIDDLE: Standardized BLOSUM62 index (referred to the expected ones for random mutation of the wild-
type residue at this position) associated to the drug-driven mutations, negative values implies that drug-
affecting mutations are more aggressive than expected, and positive values the opposite. BOTTOM: 
Standardized allelic frequencies of polymorphisms in the TK domain of EGFR found in GNOMAD database 
of human polymorphism. Vertical lines refer to position of drug-affecting mutations (red when mutation is 
found as a natural polymorphism; blue: drug-affecting mutation does not map a known human polymorphism.  
To complete the sequence analysis, we used PMUT (see Methods) to determine the general pathological 
potential of positions concentrating drug-affecting mutations, as well as the specific pathological nature of 
each drug-affecting mutation. Figure 5A shows that, in general, the TK domain (712-979) is the part of EGFR 
where a higher profile of pathogenicity is expected from any kind of mutations. This observation contrasts 
with the highly permissive N- and C-terminal domains. In general, positions concentrating drug-affecting 
mutations are signalled as ’pathological positions‘ (Figure 5B), but there is no dramatic difference between 
the average pathogenicity score of drug-affecting positions and the rest of the TK domain (Figure 5B). Finally 
(Figure 5C), with one exception (the gatekeeper mutation T790M, corresponding to a polymorphism), the rest 
of the drug-associated mutations imply a pathogenic risk similar to that of a random mutation mapping the 
same region. This stands for both, mutations leading to an equal or better response of the drug, and those 
inactivating them. In summary, pathological predictions give almost no clue on whether a mutation should 
have any impact on the activity of the TKIs. 
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Figure 5: TOP:  Pathogenicity map of EGFR according to PMUT calculations; the upper part of the plot 
considers the 19 unique mutations at each position and the bottom part the average pathological index at this 
position (the region of the tyrosine kinase domain is highlighted). MIDDLE: Average pathogenic profile of 
the tyrosine kinase domain of EGFR (averaging over the 19 potential mutations). The positions of drug-
affecting mutations are marked with small circles and mutations generating drug-resistance with yellow 
triangles; the yellow dashed line indicates the criteria to classify pathological (above) or neutral (below) 
mutations; the magenta dashed line indicates the average pathogenicity index of the tyrosine kinase domain, 
and the red one that of the positions where drug-affecting mutations are detected. BOTTOM: Standardized 
pathogenicity index of the drug-affecting mutations, positive values indicating more pathological than 
expected and negative values a more neutral effect than expected.  
 
Interaction energy profiles: As sequence-based techniques fail to have predictive power on the impact of 
mutations on the modulation of the therapeutic response of drugs, we explore the drug-protein interaction 
profiles (see Methods) obtained from the ensembles collected from MD simulations. Results in Figure 6 
provide interesting information on which residues are dominant in ligand-protein interactions. Thus, for the 
natural substrate ATP, residues involved in ATP or Mg2+ binding are the most prevalent for modulating 
binding (Figure 6 top left panel). They are: i) highly conserved in multiple TK alignments; ii) rarely involved 
in polymorphisms; and iii) never mutated due to drug treatment. Therefore, the pressure to have a functional 
protein protects these crucial residues from mutations. The interaction profiles between protein and inhibitors 
are quite different to that of the ATP-complex, but the similarity among them is quite surprising (Figure 6), 
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thereby indicating that all the inhibitors, including third-generation ones, explore a similar region of the protein 
(note that here we explore the previous non-covalent binding before bond formation). However, there are 
quantitative differences between the different drugs, especially in terms of the intensity of the interactions 
with diverse residues. For example, T790 is consistently a stabilizing residue for all inhibitor binding, except 
Osimertinib, where its effect is negligible, and L718, whose interaction with Osimertinib is much more 
favourable than with first- and second-generation inhibitors. Globally (Figure 6), around 80% of those 
mutations leading to drug-resistance occur at positions where WT residues show favourable drug interactions, 
while around 80% of the mutations leading to no change or even improvement in drug activity are also found 
at positions where the WT has neutral or unfavourable interactions with the drug. However, drug-affecting 
mutations are rarely located at residues showing very strong interactions with the drug (labelled in black in 
Figure 6). Thus, interaction profiles provide information on the regions that are prone to concentrating drug-
affecting mutations but are unable to precisely predict the position that can mutate. The interaction profiles 
when using the experimental structures of the corresponding protein-drug complexes rather than our 
computational model showed results that are overall similar. This observation is to be expected given the 
binding site similarities (Suppl. Fig. S9). 

To determine whether the interaction profiles can predict the impact of the specific mutation (at a given 
position) on drug activity, we compare MD-derived interaction profiles from WT and mutant proteins. In 
general, differential interaction profiles indicate that the protein accommodates the drug-induced mutations 
well, and the drug-protein interactions outline is not much altered (see Table 1 and examples in Suppl. Figure 
S10). This result agrees qualitatively with results from the BLOSUM analysis above, confirming that drug-
affecting mutations are generally mild. Unfortunately, differential interaction profiles fail to detect some well-
characterized resistance mutations, for example, those linked to mutations at L747 and T790. In the first case, 
the interaction profiles do not recognize L747 as a crucial position for stabilizing the drug (Figure 6), and 
accordingly, mutations to different residues (Ser, Phe or His) are predicted to be innocuous for binding (see 
example in Suppl. Figure S10). The case of the T790 gatekeeper is different. Here the energy profile detects 
threonine as stabilizing (Figure 6), but the substitution to methionine is not predicted to make this interaction 
weaker. Therefore, some mutations that reduce drug activity do not dramatically alter the direct inhibitor-
protein interactions, and the destabilizing effect is expected to be related to structural distortion, solvent 
bridges, or other effects, which are not captured by these simple calculations. 

Exploration of docking landscape: The results above suggest that the impact of some mutations on the 
binding of inhibitors to the TK domain of EGFR cannot be explained by changes in direct interactions between 
the drug and the protein. In fact, in some cases, the mutations appear at positions that are clearly involved in 
inhibitor recognition. Therefore, we explored the docking landscape using PELE (see above), which should 
allow us to detect changes in binding related not only to direct binding, but also to the easiness of drug entry, 
or the cost of reorganizing the protein residues at the binding site-aspects that are not considered in simple 
energy interaction plots. The results in Table 1 show that PELE calculations succeed in predicting drug-
induced resistance in 76% of the cases (13 out of 17) compared to 65% of differential interaction energy 
profiles (17 out of 26). PELE predictions are in general incorrect when water-mediated interactions between 
the protein and the drug are overlooked (Suppl. Figure S11). These interactions are not explicitly considered 
in PELE calculations and they stabilize the interactions of the inhibitors with T790 and T854. Exploration of 
GB/SA estimates (obtained as the total energy of the drug-protein complex minus the energy of the apo-
protein) fails to detect any significant trend as the noise in the estimates largely exceed the magnitude to be 
determined (data not show).  

MMPBSA approaches. We tested the ability of MMPBSA calculations to determine the impact of mutation 
in ligand free energy binding for some pilot systems. As expected, results were not robust as binding free 
energies are obtained by subtracting two very large numbers, which leads to large errors. When these estimates 
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are combined to obtain mutation-induced changes in binding free energy, the accumulated errors are even 
larger, leading to big uncertainties and no predictive power (see pilot calculations in Supp. Table S1). 

ML approaches. We tested the ability of ML approach to predict drug-affecting mutation (see Methods). 
Unfortunately, in our hands poor results were found and the Random Forest-based PremPLI method, which 
takes structural details into account, does not have any predictive power, as it shows a marked tendency 
towards considering all the mutations ‘resistance-driven’ (Suppl. Table S2).  

 

 
Figure 6: Interaction profiles for natural substrate ATP and inhibitors of the tyrosine kinase domain of EGFR. 
Residues involved in the interaction with the binder are shown in black and mutations that affect binding in 
red.   
Molecular dynamics-based free energy calculations: These calculations combine equilibrium MD 
simulations with non-equilibrium alchemical mutations in the apo and holo states of the protein and represent 
the ’state-of-the-art‘ in atomistic simulations. Traditionally, its practical use requires thorough expertise and 
considerable computational resources, but the workflow developed here (Figure 3) allows automation, full use 
of massively parallel computer architectures, and simple use even for non-experts. The only source of 
uncertainty arises from the small divergence in the estimates among different integration methods. The 
analysis of histograms (Figure 2) reveals that problematic cases are typically related to poor overlap between 
the ’forward‘ and the ’reverse‘ histograms, which generate noise that is maximized in CGI where a Gaussian 
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distribution of irreversible work is assumed. Very encouragingly (Table 1), these divergences are detected in 
only a few cases and are corrected by simply extending simulations. By construction, FE/MD methods contain 
all the enthalpic and entropic contributions to binding; this combined with a good force-field, and appropriate 
simulation lengths, should provide accurate estimates. Indeed, the predictive power of the FE/MD protocol 
outlined here is ideal, as it succeeds in correctly classifying mutations in all the studied cases, even in those 
where simpler methods based on the analysis of differential energy profiles or Monte Carlo PELE calculations 
fail. We cannot expect this performance to translate to all proteins, drugs, and mutations, but the excellent 
results obtained on a related system also using alchemical free energy simulations 84 raises optimism that these 
sophisticated simulations might be of general use to predict the impact of single point mutations on drug 
activity, even at preclinical or early clinical stages. The intrinsic complexity of these calculations that limits 
their use to a small number of highly expert groups is reduced by the development of robust workflows, whose 
use does not require expertise and allows results to be obtained at a time scale compatible with pre-clinical 
and clinical use.   
 

Mutation Drug Eprof  
(pred) 

PELE* 
(pred) 

ΔΔG(binding) 
FE/MD 

Exp. 
Impact∆ 

L718Q Osimertinib R - 18.7(0.8) R Resistance1 

G719S Gefitinib S S -5.5(0.9) S Sensitive2 
G719S Icotinib S - -0.9(0.8)# S Sensitive2 
G719S Erlotinib S S -1.1(0.3) S Sensitive3 
G719S Lapatinib S S -5.1(2.8) S Sensitive4 
L747S Gefitinib S S 13.8(1.8) R Resistance5 
L747F Osimertinib S - 4.4(1.2) R Resistance6 
L747H Osimertinib S - 6.5(3.6) R Resistance6 
S768I Gefitinib S R -1.8(0.4) S Sensitive7 
V769M Gefitinib S S -7.7(2.2) S Sensitive8 
T790M Gefitinib S S 15.5(0.9) R Resistance9 
T790M Erlotinib S R 17.6(1.9) R Resistance9 
T790M Lapatinib S R 19.3(0.9) R Resistance10 
T790M Osimertinib S - -0.5(2.1) S Sensitive11 
T790M Icotinib S - 11.5(0.6) R Resistance12 
L792F Osimertinib S - 4.2(1.0) R Resistance13 
L792H Osimertinib R - 8.8(0.1) R Resistance13  
G796S Osimertinib S - 4.8(0.4) R Resistance14 
C797G& Osimertinib R R Resistance Resistance15  
C797S& Osimertinib R R Resistance Resistance16 
L833V Gefitinib S S -5.7(1.4) S Sensitive17  
H835L Gefitinib S S -7.5(1.3) # S Sensitive17 
L838V Gefitinib S S -6.3(3.1) S Sensitive18 
T854A Gefitinib R S 13.2(1.1) R Resistance5 
L861Q Gefitinib S S -5.4(0.7) # S Sensitive19 
T790M/C797S Erlotinib R R 6.2(2.4) R Resistance20 

 
Table 1. Mutations impacting drug activity and estimates of the effect based on interaction energy profiles 
(3rd column), PELE docking (4th column), and molecular dynamics-based free energy simulations (5th column; 
with standard deviations on the values shown in brackets); for the latter, the predicted change in free energy 
of binding is included in kJ/mol. The experimental annotation of the effect of the mutation on drug activity is 
shown in the last column. In all cases, grey cells indicate prediction errors. 
* PELE calculations require X-ray structures as an input and cannot be used to explore covalent binders. 
& A trivial prediction of resistance for covalent inhibitors binding to C797  
# Due to poor convergence on 100*2*2 histograms, the calculations were extended to 500*2*2 TI 
trajectories. 
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∆ References for experimental activities are displayed in the Supplementary Material. 

 

DISCUSSION 

 

The mechanisms behind mutation-induced drug resistance are diverse, even in those cases where mutations 
map on the drug-binding site. Thus, mutations might affect the stability of the protein, protein-protein 
interactions, the resistance of proteins to degradation, the entry of the drug, or the inactive/active 
conformational equilibrium 85, 86 thereby increasing the ‘active state’ and accordingly the affinity for the 
substrate, which could mask the inhibitory properties of the drug. For example, in the case of EFGR, the 
T790M mutation has been suggested to increase the affinity for ATP by displacing the equilibrium towards 
the ‘active state’ 12, 87. However, T790M is not reported as a ‘cancer-driven’ mutation, which would be 
expected for mutations inducing constitutive kinase activity. Furthermore, most of the inhibitors bind to the 
‘active state’, which means that the impact of inactive/active conformational transition in terms of ATP vs. 
drug binding should be not dramatic. The requirement for EGFR to maintain the kinase activity rules out 
resistance-related mutations affecting the global structure or the entry of the substrate/drug. Similar reasonings 
are likely to be transferable to other proteins, thus suggesting that interfering with drug binding is likely to be 
a common mechanism in resistance-related mutations 76-78, even though other processes can eventually 
contribute to the resistance. We assume here that we can predict the sensitive/resistance nature of a given 
mutation (for a particular drug) based on the fingerprint that it produces in the binding free energy of the drug. 
The question is then how to obtain an estimate of the impact of mutations on drug binding compatible with 
the needs of clinical practice or preclinical research. 

Sequence analyses provide useful information on the origin and placement of drug-affecting mutations. In 
most cases, these alterations are generated by single nucleotide changes and are typically located in conserved 
regions, where the pathogenic risk associated with mutations is high. Specific positions where drug-affecting 
mutations occur show a similar degree of conservation to that of neighbouring regions. The mutations that 
lead to an alteration in drug efficacy tend to be mild in terms of changes in amino acid properties and are not 
more pathogenic than the average expected value at that position. With a few exceptions, drug-associated 
mutations do not match polymorphisms. This observation suggests that high stress in replication and most 
likely poor proofreading of the nascent DNA are required for the appearance of these mutations. Finally, a 
significant number of the studied mutations imply equal or higher sensitivity to the drug than the WT, which 
means that not all drug-affecting mutations correspond to a canonical positive selection paradigm. Overall, 
sequence-dependent trends are useful to define regions where mutations are susceptible to altering the 
response to the drug, but are not able to predict when a mutation will cause resistance to chemotherapy. 

Energy profiles efficiently detect those regions that establish strong interactions with the ligand and, 
accordingly, are more informative than sequence analysis to precisely detect the ’susceptible‘ regions where 
mutations might impact the activity of the drug. However, the success rate in predicting drug-affecting 
mutations is only moderate as there is a non-negligible number of cases where the impact of mutations on 
ligand binding is modulated by non-direct interacting terms. When flexibility and diffusion considerations are 
incorporated in the evaluation of drug binding, the predictive power increases, but not dramatically (up to 
76%), with cases where we cannot reproduce experimental findings, in most cases due to the involvement of 
water-mediated interactions that are not easily captured by a method based on continuum solvation models. 
GB/SA calculations have large associated errors, which hamper any meaningful comparison and, in our hands, 
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they lack predictive power. Similarly, although ML-based approaches rely on structural information and are 
specifically trained to predict the impact of mutations on drug binding, they show very poor predictive power.   

Non-equilibrium alchemical free energy calculations provide results of an astonishing accuracy (100% success 
rate), based only on physical principles without any ad hoc training process. By construction, assuming a good 
force field and extended sampling, the protocol should capture the different contributions (enthalpic and 
entropic) to differential binding and has the advantage that it provides a physical rationale for the effect of the 
studied mutations. The limitations of these types of calculations are clear: i) they require user expertise; ii) the 
setup of the calculations is difficult as it involves thousands of individual simulations, each requiring several 
preparation steps; and iii) these calculations are computationally expensive and might require very large wall 
clock times, thereby hampering its practical use in clinical environments. The BioExcel Building Blocks-
based workflow developed here allows us to greatly simplify the complexity of launching simulations, thereby 
circumventing the need for specific training in advanced simulation methods. Furthermore, the use of a clever 
workflow manager (PyCOMPSs; see Methods) allows extremely fast and efficient parallelism, thereby 
reducing the entire process to hours when using a medium-sized cluster. It can reduce the process to minutes 
in a pre-exascale supercomputer and most likely to seconds in an ExaScale machine. We speculate that once 
fully calibrated and tested, protocols like the one shown here could be used to accurately predict mutations 
affecting drug activity in the in silico stages of drug design, thereby contributing to the development of 
alternative drugs by anticipating inactivating mutations. 

DATA AND SOFTWARE AVAILABILITY 

The code for this work is available at https://github.com/bioexcel/biobb_hpc_workflows/tree/condapack. MD 
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