648 research outputs found

    The angular momentum transport by unstable toroidal magnetic fields

    Full text link
    We demonstrate with a nonlinear MHD code that angular momentum can be transported due to the magnetic instability of toroidal fields under the influence of differential rotation, and that the resulting effective viscosity may be high enough to explain the almost rigid-body rotation observed in radiative stellar cores. Only stationary current-free fields and only those combinations of rotation rates and magnetic field amplitudes which provide maximal numerical values of the viscosity are considered. We find that the dimensionless ratio of the effective over molecular viscosity, νT/ν\nu_T/\nu;, linearly grows with the Reynolds number of the rotating fluid multiplied with the square-root of the magnetic Prandtl number - which is of order unity for the considered red sub-giant KIC 7341231. For the considered interval of magnetic Reynolds numbers - which is restricted by numerical constraints of the nonlinear MHD code - there is a remarkable influence of the magnetic Prandtl number on the relative importance of the contributions of the Reynolds stress and the Maxwell stress to the total viscosity, which is magnetically dominated only for Pm \gtrsim 0.5. We also find that the magnetized plasma behaves as a non-Newtonian fluid, i.e. the resulting effective viscosity depends on the shear in the rotation law. The decay time of the differential rotation thus depends on its shear and becomes longer and longer during the spin-down of a stellar core.Comment: Revised version. 7 pages, 9 figures; accepted for publication in A&

    A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater

    Get PDF
    Modern Martian dust is similar in composition to the global soil unit and bulk basaltic Mars crust, but it is enriched in S and Cl. The Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory Curiosity rover analyzed air fall dust on the science observation tray (o-tray) in Gale Crater to determine dust oxide compositions. The o-tray dust has the highest concentrations of SO3 and Cl measured in Mars dust (SO3 8.3%; Cl 1.1 wt %). The molar S/Cl in the dust (3.35 ± 0.34) is consistent with previous studies of Martian dust and soils (S/Cl = 3.7 ± 0.7). Fe is also elevated ~25% over average Mars soils and the bulk crust. These enrichments link air fall dust with the S-, Cl-, and Fe-rich X-ray amorphous component of Gale Crater soil. Dust and soil have the same S/Cl, constraining the surface concentrations of S and Cl on a global scale

    Depth selective Mossbauer spectroscopy: Analysis and simulation of 6.4 keV and 14.4 keV spectra obtained from rocks at Gusev Crater, Mars, and layered laboratory samples

    Get PDF
    The miniaturized Mössbauer spectrometer (MIMOS) II Mössbauer spectrometers on the Mars Exploration Rovers (MER) simultaneously obtained 6.4 keV and 14.4 keV Mössbauer spectra from rock and soil targets. Because photons with lower energy have a shallower penetration depth, 6.4 keV spectra contain more mineralogical information about the near-surface region of a sample than do 14.4 keV spectra. The influence of surface layers of varying composition and thickness on Mössbauer spectra was investigated by Monte Carlo simulation and by measurement using a copy of the MER MIMOS II instrument and samples with one or two layers of known thicknesses. Thin sections of minerals or metallic Fe foil on top of a thick mineral sample were used to produce samples with thin layers of known thickness on a thick substrate. Monte Carlo simulation of MER spectra obtained on the rock Mazatzal, which displays a coating on a basaltic substrate, and other Adirondack Class rocks results in a calculated thickness of 10 micrometer for the Mazatzal surface layer. The 6.4 keV spectra obtained on Adirondack Class rocks, on laboratory samples, and in Monte Carlo calculations show an apparent olivine enrichment which is not related to any observable surface layer

    Conformations of closed DNA

    Full text link
    We examine the conformations of a model for a short segment of closed DNA. The molecule is represented as a cylindrically symmetric elastic rod with a constraint corresponding to a specification of the linking number. We obtain analytic expressions leading to the spatial configuration of a family of solutions representing distortions that interpolate between the circular form of DNA and a figure-eight form that represents the onset of interwinding. We are also able to generate knotted loops. We suggest ways to use our approach to produce other configurations relevant to studies of DNA structure. The stability of the distorted configurations is assessed, along with the effects of fluctuations on the free energy of the various configurations.Comment: 39 pages in REVTEX with 14 eps figures. Submitted to Phys. Rev. E. This manuscript updates, expands and revises, to a considerable extent, a previously posted manuscript, entitled "Conformations of Circular DNA," which appeared as cond-mat/970104

    Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences

    Get PDF
    G-quadruplex structures formed in the telomeric DNA are thought to play a role in the telomere function. Drugs that stabilize the G-quadruplexes were shown to have anticancer effects. The structures formed by the basic telomeric quadruplex-forming unit G3(TTAG3)3 were the subject of multiple studies. Here, we employ 125I-radioprobing, a method based on analysis of the distribution of DNA breaks after decay of 125I incorporated into one of the nucleotides, to determine the fold of the telomeric DNA in the presence of TMPyP4 and telomestatin, G-quadruplex-binding ligands and putative anticancer drugs. We show that d[G3(TTAG3)3125I-CT] adopts basket conformation in the presence of NaCl and that addition of either of the drugs does not change this conformation of the quadruplex. In KCl, the d[G3(TTAG3)3125I-CT] is most likely present as a mixture of two or more conformations, but addition of the drugs stabilize the basket conformation. We also show that d[G3(TTAG3)3125I-CT] with a 5′-flanking sequence folds into (3+1) type 2 conformation in KCl, while in NaCl it adopts a novel (3+1) basket conformation with a diagonal central loop. The results demonstrate the structural flexibility of the human telomeric DNA; and show how cations, quadruplex-binding drugs and flanking sequences can affect the conformation of the telomeric quadruplex

    Marquette Island: A Distinct Mafic Lithology Discovered by Opportunity

    Get PDF
    While rolling over the Meridiani Planum sedimentary terrane, the rover Opportunity has occasionally discovered large, > 10 cm erratics. Most of these have proven to be meteorites [1], but one - Bounce Rock - is a martian basaltic rock similar in composition to the meteorite EETA79001 lithology B [2]. Presently, Opportunity is intensively investigating an --30 cm tall rock named Marquette Island that may be a distinct type of martian mafic lithology. We report the results of its continuing investigation using the Microscopic Imager (MI); Mossbauer Spectrometer (MB) and Alpha Particle X-ray Spectrometer (APXS). A companion abstract discusses the results of Panoramic Camera (Pancam) imaging of the rock [3]
    corecore