71 research outputs found

    ASTER, a multinational Earth observing concept

    Get PDF
    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed

    Addressing the need for improved land cover map products for policy support

    Get PDF
    The continued increase of anthropogenic pressure on the Earth’s ecosystems is degrading the natural environment and then decreasing the services it provides to humans. The type, quantity, and quality of many of those services are directly connected to land cover, yet competing demands for land continue to drive rapid land cover change, affecting ecosystem services. Accurate and updated land cover information is thus more important than ever, however, despite its importance, the needs of many users remain only partially attended. A key underlying reason for this is that user needs vary widely, since most current products – and there are many available – are produced for a specific type of end user, for example the climate modelling community. With this in mind we focus on the need for flexible, automated processing approaches that support on-demand, customized land cover products at various scales. Although land cover processing systems are gradually evolving in this direction there is much more to do and several important challenges must be addressed, including high quality reference data for training and validation and even better access to satellite data. Here, we 1) present a generic system architecture that we suggest land cover production systems evolve towards, 2) discuss the challenges involved, and 3) propose a step forward. Flexible systems that can generate on-demand products that match users’ specific needs would fundamentally change the relationship between users and land cover products – requiring more government support to make these systems a reality

    Addressing the need for improved land cover map products for policy support

    Get PDF
    CITATION: Szantoi, Z. et al. 2020. Addressing the need for improved land cover map products for policy support. Environmental Science & Policy, 12:28-35, doi:10.1016/j.envsci.2020.04.005.The original publication is available at https://www.sciencedirect.comThe continued increase of anthropogenic pressure on the Earth’s ecosystems is degrading the natural environment and then decreasing the services it provides to humans. The type, quantity, and quality of many of those services are directly connected to land cover, yet competing demands for land continue to drive rapid land cover change, affecting ecosystem services. Accurate and updated land cover information is thus more important than ever, however, despite its importance, the needs of many users remain only partially attended. A key underlying reason for this is that user needs vary widely, since most current products – and there are many available – are produced for a specific type of end user, for example the climate modelling community. With this in mind we focus on the need for flexible, automated processing approaches that support on-demand, customized land cover products at various scales. Although land cover processing systems are gradually evolving in this direction there is much more to do and several important challenges must be addressed, including high quality reference data for training and validation and even better access to satellite data. Here, we 1) present a generic system architecture that we suggest land cover production systems evolve towards, 2) discuss the challenges involved, and 3) propose a step forward. Flexible systems that can generate on-demand products that match users’ specific needs would fundamentally change the relationship between users and land cover products – requiring more government support to make these systems a reality.Publisher's versio

    A Randomized Study Comparing Digital Imaging to Traditional Glass Slide Microscopy for Breast Biopsy and Cancer Diagnosis.

    Get PDF
    BACKGROUND: Digital whole slide imaging may be useful for obtaining second opinions and is used in many countries. However, the U.S. Food and Drug Administration requires verification studies. METHODS: Pathologists were randomized to interpret one of four sets of breast biopsy cases during two phases, separated by ≥9 months, using glass slides or digital format (sixty cases per set, one slide per case, RESULTS: Sixty-five percent of responding pathologists were eligible, and 252 consented to randomization; 208 completed Phase I (115 glass, 93 digital); and 172 completed Phase II (86 glass, 86 digital). Accuracy was slightly higher using glass compared to digital format and varied by category: invasive carcinoma, 96% versus 93% ( CONCLUSIONS: In this large randomized study, digital format interpretations were similar to glass slide interpretations of benign and invasive cancer cases. However, cases in the middle of the spectrum, where more inherent variability exists, may be more problematic in digital format. Future studies evaluating the effect these findings exert on clinical practice and patient outcomes are required

    Measuring the Impact of Conservation : The Growing Importance of Monitoring Fauna, Flora and Funga

    Get PDF
    Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on.This paper was made possible by funding from the Swiss Network for International Studies to the University of Lausanne (L.F. and P.J.S.) and its partners under the project: "Unblocking the flow of biodiversity data for multi-stakeholder environmental sustainability management". The research was carried out, in part, by GNG at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). PAVB was supported by the project MACRISK-PTDC/BIA-CBI/0625/2021, through the FCT-FundacAo para a Ciencia e a Tecnologia. YNB acknowledges support from the Audemars-Watkins Foundation for the CBCR's protected area monitoring work featured in this paper.info:eu-repo/semantics/publishedVersio

    Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga

    Get PDF
    Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on
    corecore