8 research outputs found

    From Glasma to Quark Gluon Plasma in heavy ion collisions

    Full text link
    When two sheets of Color Glass Condensate collide in a high energy heavy ion collision, they form matter with very high energy densities called the Glasma. We describe how this matter is formed, its remarkable properties and its relevance for understanding thermalization of the Quark Gluon Plasma in heavy ion collisions. Long range rapidity correlations contained in the near side ridge measured in heavy ion collisions may allow one to directly infer the properties of the Glasma.Comment: Plenary Topical Overview Talk, Quark Matter 2008; 10 pages 8 figure

    Matter-Antimatter Asymmetry in the Large Hadron Collider

    Full text link
    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various NNNN and AAAA collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from ∌0\sim 0% at AGS to ∌100\sim 100% at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant entropy density, various antiparticle-to-particle ratios are studied in framework of the hadron resonance gas (HRG) model. Implementing modified phase space and distribution function in the grand-canonical ensemble and taking into account the experimental acceptance, the ratios of antiparticle-to-particle over the whole range of center-of-mass-energies are very well reproduced by the HRG model. Furthermore, the antiproton-to-proton ratios measured by ALICE in pppp collisions is also very well described by the HRG model. It is likely to conclude that the LHC heavy-ion program will produce the same particle ratios as the pppp program implying the dynamics and evolution of the system would not depend on the initial conditions. The ratios of bosons and baryons get very close to unity indicating that the matter-antimatter asymmetry nearly vanishes at LHC.Comment: 9 pages, 5 eps-figures, revtex4-styl

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Limiting fragmentation in hadron-hadron collisions at high energies

    Get PDF
    Limiting fragmentation in proton-proton, deuteron-nucleus and nucleus-nucleus collisions is analyzed in the framework of the Balitsky-Kovchegov equation in high energy QCD. Good agreement with experimental data is obtained for a wide range of energies. Further detailed tests of limiting fragmentation at RHIC and the LHC will provide insight into the evolution equations for high energy QCD.Comment: 28 pages, 10 figures (2 new figures, text slightly expanded, and some additional references

    Two Introductory Lectures on High-Energy QCD and Heavy-Ion Collisions

    No full text

    Heavy-ion collisions at the LHC - Last call for predictions

    Get PDF
    This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute 'Heavy Ion Collisions at the LHC - Last Call for Predictions', held from 14th May to 10th June 2007.This is a manuscript of an article from Journal of Physics G 35 (2008): 054001, doi: 10.1088/0954-3899/35/5/054001. Posted with permission.</p
    corecore