40 research outputs found

    Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane

    Get PDF
    Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y. Sun, and D.G. Drubin. 2003. Cell. 115:475–487). However, the nature of the primary endocytic profile in yeast and how clathrin and actin cooperate to generate an endocytic vesicle is unknown. In this study, we analyze the distribution of nine different proteins involved in endocytic uptake along plasma membrane invaginations using immunoelectron microscopy. We find that the primary endocytic profiles are tubular invaginations of up to 50 nm in diameter and 180 nm in length, which accumulate the endocytic coat components at the tip. Interestingly, significant actin labeling is only observed on invaginations longer than 50 nm, suggesting that initial membrane bending occurs before initiation of the slow inward movement. We also find that in the longest profiles, actin and the myosin-I Myo5p form two distinct structures that might be implicated in vesicle fission

    DNA methylation epigenotypes in breast cancer molecular subtypes

    Get PDF
    12 páginas, 3 figuras, 3 tablas.-- et al.[Introduction]: Identification of gene expression-based breast cancer subtypes is considered a critical means of prognostication. Genetic mutations along with epigenetic alterations contribute to gene-expression changes occurring in breast cancer. So far, these epigenetic contributions to sporadic breast cancer subtypes have not been well characterized, and only a limited understanding exists of the epigenetic mechanisms affected in those particular breast cancer subtypes. The present study was undertaken to dissect the breast cancer methylome and to deliver specific epigenotypes associated with particular breast cancer subtypes. [Methods]: By using a microarray approach, we analyzed DNA methylation in regulatory regions of 806 cancer-related genes in 28 breast cancer paired samples. We subsequently performed substantial technical and biologic validation by pyrosequencing, investigating the top qualifying 19 CpG regions in independent cohorts encompassing 47 basal-like, 44 ERBB2+ overexpressing, 48 luminal A, and 48 luminal B paired breast cancer/adjacent tissues. With the all-subset selection method, we identified the most subtype-predictive methylation profiles in multivariable logistic regression analysis. [Results]: The approach efficiently recognized 15 individual CpG loci differentially methylated in breast cancer tumor subtypes. We further identified novel subtype-specific epigenotypes that clearly demonstrate the differences in the methylation profiles of basal-like and human epidermal growth factor 2 (HER2)-overexpressing tumors. [Conclusions]: Our results provide evidence that well-defined DNA methylation profiles enable breast cancer subtype prediction and support the utilization of this biomarker for prognostication and therapeutic stratification of patients with breast cancer.This work was supported by grants from project CGL2008-01131 (Departamento de Sanidad del Gobierno Vasco), S-PE08UN45 and PE09BF02 (Departamento de Ciencia y Tecnologia del Gobierno Vasco), BIO2008-04212, and RD06/0020/1019 (Red Tematica de Investigacion Cooperativa en Cancer, RTICC) from the MICINN. The CIBER de Enfermedades Raras is an initiative of the ISCIII. NGB had a doctoral fellowship from the Basque Government (Departamento de Educacion, Universidades e Investigacion).Peer reviewe

    Smoking cessation opportunities in severe mental illness (tobacco intensive motivational and estimate risk — TIMER—): study protocol for a randomized controlled trial

    Get PDF
    There is an increased risk of premature death in people with severe mental illness (SMI). Respiratory disorders and cardiovascular disease are leading causes of increased mortality rates in these patients, and tobacco consumption remains the most preventable risk factor involved. Developing new tools to motivate patients towards cessation of smoking is a high priority. Information on the motivational value of giving the lung age and prevention opportunities is unknown in this high-risk population. In the context of community care, screening and early detection of lung damage could potentially be used, together with mobile technology, in order to produce a prevention message, which may provide patients with SMI with a better chance of quitting smoking.This study receives funding by the Spanish Ministry of Economy, Industry and Competitiveness, Instituto Carlos III (FIS PI16/00802)

    Storage-protein hydrolysis and protein-body breakdown in germinatedZea mays L. seeds

    No full text
    Storage proteins of maize (Zea mays L.) were studied in germinated seeds, as were the proteins of protein bodies isolated from endosperms at different germination times. Major endosperm storage proteins were degraded in a sequential way, glutelin 2 being hydrolysed faster than zein 1. Immunocytochemical labelling of the different protein bodies using the antisera anti-glutelin 2 and anti-zein 1 indicates that the protein bodies were degraded by progressive hydrolysis from their surface. The digestion of glutelin 2 correlated with the disappearance of the protein-body membranes.This work was supported by grant from the Consejo Superior de Investigaciones Cientificas and the Centro para el Desarrollo Tecnologico Industrial. M. Isabel Geli is the recipient of a fellowship from CSIC.Peer reviewe

    Two Structural Domains Mediate Two Sequential Events in [gamma]-Zein Targeting: Protein Endoplasmic Reticulum Retention and Protein Body Formation

    No full text
    12 pages, 7 figures.-- PMID: 12244234 [PubMed].-- PMCID: PMC160571.[gamma]-Zein is a maize storage protein synthesized by endosperm cells and stored together with [alpha]- and [beta]-zeins in specialized organelles called protein bodies. Previous studies have shown that in maize there is only one type of protein body and it is derived directly from the endoplasmic reticulum (ER). In this article, we describe the domains of [gamma]-zein involved in ER retention and the domains involved in protein body formation. To identify the signal responsible for [gamma]-zein retention in ER-derived protein bodies, DNAs encoding various deletion mutants of [gamma]-zein were constructed and introduced into Arabidopsis as a heterologous system. By using pulse-chase experiments and immunoelectron microscopy, we demonstrated that the deletion of a proline-rich domain at the N terminus of [gamma]-zein puts an end to its retention in the ER; this resulted in the secretion of the mutated protein. The amino acid sequence of [gamma]-zein necessary for ER retention is the repeat domain composed of eight units of the hexapeptide PPPVHL. In addition, we observed that only those [gamma]-zein mutants that contained both the proline-rich repeat domain and the C-terminal cysteine-rich domain were able to form ER-derived protein bodies. We suggest that the retention of [gamma]-zein in the ER could be a result of a protein-protein association or a transient interaction of the repeat domain with ER membranes.This work was supported by Grant No. Bio92/186 from the Comision Interministerial de Ciencia y Technología (CICYT). M.I.G. is the recipient of afellowship from the Formación de1 Personal Investigador (FPI).Peer reviewe

    Lysine-rich modified γ-zeins accumulate in protein bodies of transiently transformed maize endosperms

    No full text
    During maize seed development, endosperm cells synthesize large amounts of storage proteins, α-, β, and γ-zeins, which accumulate within endoplasmic reticulum (ER)-derived protein bodies. The absence of lysine in all zein polypeptides results in an imbalance in the amino acid composition of maize seeds. We modified the maize γ-zein gene through the introduction of lysine-rich (Pro-Lys)n coding sequences at different sites of the γ-zein coding sequence. Maize endosperms were transiently transformed by biolistic bombardment with Lys-rich γ-zein constructs under the control of the 1.7 kb γ-zein seed-specific promoter and the cauliflower mosaic virus (CaMV) 35S promoter. When (Pro-Lys)n sequences were inserted contiguous to or in substitution of the Pro-Xaa region of the γ-zein, high levels of protein were observed. In contrast, when (Pro-Lys)n sequences were inserted five residues from the C-terminal, the transcript was present but modified protein was not detected. These results suggest that only an appropriate positioning of Lys-rich inserts leads to the modified molecule displaying correct folding and stability. Subcellular localization analyses and immunoelectron microscopy studies on isolated protein bodies demonstrated that modified γ-zeins accumulate within these organelles and co-localized with endogenous - and γ-zeins. The studies reported here show the feasibility of manipulating the γ-zein gene in order to obtain stable and correctly targeted Lys-rich zeins in maize seeds.This work was supported by research grants from the CICYT (Comision Interministerial de Ciencia y Tecnologia) and the CIRIT (Comissio Interdepartamental de Recerca i Innovacio Tecnologica). I.A. was supported by a fellowship from the Basque Government and I.D by a fellowship from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil).Peer reviewe

    Lysine-rich γ-zeins are secreted in transgenic Arabidopsis plants

    No full text
    We have previously shown that the maize (Zea mays L.) storage prolamine γ-zein, accumulates in endoplasmic reticulum-derived protein bodies in transgenic plants of Arabidopsis thaliana (L.) ecotype R+P. The retention of γ-zein in the endoplasmic reticulum was found to be mediated by structural features contained in the polypeptide, an N-terminal proline-rich and a C-terminal cysteine-rich domain which were necessary for the correct retention and assembly of γ-zein within protein bodies (M.I. Geli et al., 1994, Plant Cell 6: 1911–1922). In the present work we incorporated in the γ-zein gene lysine-rich coding sequences which were positioned after the N-terminal proline-rich domain and at five amino-acid residues from the C-terminus. The targeting of lysine-rich γ-zeins was analyzed by expression of chimeric genes regulated by the cauliflower mosaic virus (CaMV) 35S promoter in transgenic Arabidopsis plants. The lysine-rich γ-zeins were detected by immunoblotting and we found that these proteins were modified post-translationally to reach their mature form. Subcellular fractionation and immunocytochemical studies demonstrated that glycosylated lysine-rich γ-zeins were secreted to the cell wall of transgenic Arabidopsis leaf cells.This work was supported by a grant from the CICYT (Comision Interministerial de Ciencia y Tecnologia). I. A. was supported by a fellowship from the Basque Government.Peer reviewe

    TEDS Site Phosphorylation of the Yeast Myosins I Is Required for Ligand-induced but Not for Constitutive Endocytosis of the G Protein-coupled Receptor Ste2p

    No full text
    The yeast myosins I Myo3p and Myo5p have well established functions in the polarization of the actin cytoskeleton and in the endocytic uptake of the G protein-coupled receptor Ste2p. A number of results suggest that phosphorylation of the conserved TEDS serine of the myosin I motor head by the Cdc42p activated p21-activated kinases Ste20p and Cla4p is required for the organization of the actin cytoskeleton. However, the role of this signaling cascade in the endocytic uptake has not been investigated. Interestingly, we find that Myo5p TEDS site phosphorylation is not required for slow, constitutive endocytosis of Ste2p, but it is essential for rapid, ligand-induced internalization of the receptor. Our results strongly suggest that a kinase activates the myosins I to sustain fast endocytic uptake. Surprisingly, however, despite the fact that only p21-activated kinases are known to phosphorylate the conserved TEDS site, we find that these kinases are not essential for ligand-induced internalization of Ste2p. Our observations indicate that a different signaling cascade, involving the yeast homologues of the mammalian PDK1 (3-phosphoinositide-dependent-protein kinase-1), Phk1p and Pkh2p, and serum and glucocorticoid-induced kinase, Ypk1p and Ypk2p, activate Myo3p and Myo5p for their endocytic function

    Role of structural domains for maize γ-zein retention in Xenopus oocytes

    No full text
    In order to examine the role of cysteine (Cys)-rich domains in the accumulation of maize (Zea mays L.) γ-zein within the endoplasmic-reticulum-derived protein bodies, we studied the localization of γ-zein and of two truncated forms of γ-zein in Xenopus laevis oocytes. The two derivatives were constructed from a DNA encoding the γ-zein: one by deletion of the Pro-X linker region (21 amino acids) and the other by deletion of the Cys-rich domain (94 amino acids). In-vitro-synthesized transcripts were injected into oocytes and the distribution of the translation products was then analyzed. The entire γ-zein and both truncated forms of the γ-zein had accumulated efficiently in microsomes and no traces of secretion were observed. We suggest that neither C-terminal Cys-rich nor Pro-X domains are essential for γ-zein retention in oocyte vesicles. Therefore, structural features derived from disulphide bonds are not necessary for γ-zein targeting on the endoplasmic reticulum.This research was supported by grants from the Comisidn Interministerial de Ciencia y Tecnologia (CICYT), Bio-90 (to P.P) and BIO 92/186 (to M.D.L.). M.I.G. and J.M.C. are recipient of a postgraduate fellowship from the Formaci6n del Personal Investigador (FPI).Peer reviewe

    Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes

    No full text
    Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes
    corecore