66 research outputs found

    Overview of Spirit Microscopic Imager Results

    Get PDF
    This paper provides an overview of Mars Exploration Rover Spirit Microscopic Imager (MI) operations and the calibration, processing, and analysis of MI data. The focus of this overview is on the last five Earth years (2005-2010) of Spirit's mission in Gusev crater, supplementing the previous overview of the first 450 sols of the Spirit MI investigation. Updates to radiometric calibration using in-flight data and improvements in high-level processing are summarized. Released data products are described, and a table of MI observations, including target/feature names and associated data sets, is appended. The MI observed natural and disturbed exposures of rocks and soils as well as magnets and other rover hardware. These hand-lens-scale observations have provided key constraints on interpretations of the formation and geologic history of features, rocks, and soils examined by Spirit. MI images complement observations by other Spirit instruments, and together show that impact and volcanic processes have dominated the origin and evolution of the rocks in Gusev crater, with aqueous activity indicated by the presence of silica-rich rocks and sulfate-rich soils. The textures of some of the silica-rich rocks are similar to terrestrial hot spring deposits, and observations of subsurface cemented layers indicate recent aqueous mobilization of sulfates in places. Wind action has recently modified soils and abraded many of the rocks imaged by the MI, as observed at other Mars landing sites. Plain Language Summary The Microscopic Imager (MI) on NASA's Spirit rover returned the highest-resolution images of the Martian surface available at the time of the 2004-2010 mission. Designed to survive 90 Mars days (sols) and search for evidence of water in the past, Spirit returned data for 2210 sols, far exceeding all expectations. This paper summarizes the scientific insights gleaned from the thousands of MI images acquired during the last 5years of the mission, supplementing the summary of the first 450 sols of the Spirit MI investigation published previously (Herkenhoff et al., ). Along with data from the other instruments on Spirit, MI images guided the scientific interpretation of the geologic history of the rocks and soils observed in Gusev crater on Mars. We conclude that the geologic history of the area explored by Spirit has been dominated by impacts and volcanism, and that water, perhaps very hot water, was involved in the evolution of some of the rocks and soils. More recently, winds have moved soil particles and abraded rocks, as observed elsewhere on Mars. These results have improved our understanding of Mars' history and informed planning of future missions to Mars.National Aeronautics and Space AdministrationPublic domain articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    SBDS Expression and Localization at the Mitotic Spindle in Human Myeloid Progenitors

    Get PDF
    BACKGROUND: Shwachman-Diamond Syndrome (SDS) is a hereditary disease caused by mutations in the SBDS gene. SDS is clinically characterized by pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction. The hematologic abnormalities include neutropenia, neutrophil chemotaxis defects, and an increased risk of developing Acute Myeloid Leukemia (AML). Although several studies have suggested that SBDS as a protein plays a role in ribosome processing/maturation, its impact on human neutrophil development and function remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We observed that SBDS RNA and protein are expressed in the human myeloid leukemia PLB-985 cell line and in human hematopoietic progenitor cells by quantitative RT-PCR and Western blot analysis. SBDS expression is downregulated during neutrophil differentiation. Additionally, we observed that the differentiation and proliferation capacity of SDS-patient bone marrow hematopoietic progenitor cells in a liquid differentiation system was reduced as compared to control cultures. Immunofluorescence analysis showed that SBDS co-localizes with the mitotic spindle and in vitro binding studies reveal a direct interaction of SBDS with microtubules. In interphase cells a perinuclear enrichment of SBDS protein which co-localized with the microtubule organizing center (MTOC) was observed. Also, we observed that transiently expressed SDS patient-derived SBDS-K62 or SBDS-C84 mutant proteins could co-localize with the MTOC and mitotic spindle. CONCLUSIONS/SIGNIFICANCE: SBDS co-localizes with the mitotic spindle, suggesting a role for SBDS in the cell division process, which corresponds to the decreased proliferation capacity of SDS-patient bone marrow CD34(+) hematopoietic progenitor cells in our culture system and also to the neutropenia in SDS patients. A role in chromosome missegregation has not been clarified, since similar spatial and time-dependent localization is observed when patient-derived SBDS mutant proteins are studied. Thus, the increased risk of myeloid malignancy in SDS remains unexplained

    Biosorption and Biomineralization of U(VI) by the Marine Bacterium Idiomarina loihiensis MAH1: Effect of Background Electrolyte and pH

    Get PDF
    The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10−4 to 10−5 M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10−4 M, background electrolyte = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The LIII-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the solution.This work was funded by the grants CGL2009-09760 and CGL2012-36505 (Ministerio de Ciencia e Innovación), and RNM 3943 (Junta de Andalucía), Spain

    Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    Get PDF
    Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations.Physical characterization indicated that HBsAg-NE consists of uniform lipid droplets (349+/-17 nm) associated with HBsAg through electrostatic and hydrophobic interactions. Immunogenicity of HBsAg-NE vaccine was evaluated in mice, rats and guinea pigs. Animals immunized intranasally developed robust and sustained systemic IgG, mucosal IgA and strong antigen-specific cellular immune responses. Serum IgG reached > or = 10(6) titers and was comparable to intramuscular vaccination with alum-adjuvanted vaccine (HBsAg-Alu). Normalization showed that HBsAg-NE vaccination correlates with a protective immunity equivalent or greater than 1000 IU/ml. Th1 polarized immune response was indicated by IFN-gamma and TNF-alpha cytokine production and elevated levels of IgG(2) subclass of HBsAg-specific antibodies. The vaccine retains full immunogenicity for a year at 4 degrees C, 6 months at 25 degrees C and 6 weeks at 40 degrees C. Comprehensive pre-clinical toxicology evaluation demonstrated that HBsAg-NE vaccine is safe and well tolerated in multiple animal models.Our results suggest that needle-free nasal immunization with HBsAg-NE could be a safe and effective hepatitis B vaccine, or provide an alternative booster administration for the parenteral hepatitis B vaccines. This vaccine induces a Th1 associated cellular immunity and also may provide therapeutic benefit to patients with chronic hepatitis B infection who lack cellular immune responses to adequately control viral replication. Long-term stability of this vaccine formulation at elevated temperatures suggests a direct advantage in the field, since potential excursions from cold chain maintenance could be tolerated without a loss in therapeutic efficacy

    The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP)

    Full text link

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore