11 research outputs found

    rKOMICS:An R package for processing mitochondrial minicircle assemblies in population-scale genome projects

    Get PDF
    Abstract Background The advent of population-scale genome projects has revolutionized our biological understanding of parasitic protozoa. However, while hundreds to thousands of nuclear genomes of parasitic protozoa have been generated and analyzed, information about the diversity, structure and evolution of their mitochondrial genomes remains fragmentary, mainly because of their extraordinary complexity. Indeed, unicellular flagellates of the order Kinetoplastida contain structurally the most complex mitochondrial genome of all eukaryotes, organized as a giant network of homogeneous maxicircles and heterogeneous minicircles. We recently developed KOMICS, an analysis toolkit that automates the assembly and circularization of the mitochondrial genomes of Kinetoplastid parasites. While this tool overcomes the limitation of extracting mitochondrial assemblies from Next-Generation Sequencing datasets, interpreting and visualizing the genetic (dis)similarity within and between samples remains a time-consuming process. Results Here, we present a new analysis toolkit—rKOMICS—to streamline the analyses of minicircle sequence diversity in population-scale genome projects. rKOMICS is a user-friendly R package that has simple installation requirements and that is applicable to all 27 trypanosomatid genera. Once minicircle sequence alignments are generated, rKOMICS allows to examine, summarize and visualize minicircle sequence diversity within and between samples through the analyses of minicircle sequence clusters. We showcase the functionalities of the (r)KOMICS tool suite using a whole-genome sequencing dataset from a recently published study on the history of diversification of the Leishmania braziliensis species complex in Peru. Analyses of population diversity and structure highlighted differences in minicircle sequence richness and composition between Leishmania subspecies, and between subpopulations within subspecies. Conclusion The rKOMICS package establishes a critical framework to manipulate, explore and extract biologically relevant information from mitochondrial minicircle assemblies in tens to hundreds of samples simultaneously and efficiently. This should facilitate research that aims to develop new molecular markers for identifying species-specific minicircles, or to study the ancestry of parasites for complementary insights into their evolutionary history

    Deep kinetoplast genome analyses result in a novel molecular assay for detecting trypanosoma brucei gambiense-specific minicircles

    Get PDF
    The World Health Organization targeted Trypanosoma brucei gambiense (Tbg) human African trypanosomiasis for elimination of transmission by 2030. Sensitive molecular markers that specifically detect Tbg type 1 (Tbg1) parasites will be important tools to assist in reaching this goal. We aim at improving molecular diagnosis of Tbg1 infections by targeting the abundant mitochondrial minicircles within the kinetoplast of these parasites. Using Next-Generation Sequencing of total cellular DNA extracts, we assembled and annotated the kinetoplast genome and investigated minicircle sequence diversity in 38 animal- and human-infective trypanosome strains. Computational analyses recognized a total of 241 Minicircle Sequence Classes as Tbg1-specific, of which three were shared by the 18 studied Tbg1 strains. We developed a minicircle-based assay that is applicable on animals and as specific as the TgsGP-based assay, the current golden standard for molecular detection of Tbg1. The median copy number of the targeted minicircle was equal to eight, suggesting our minicircle-based assay may be used for the sensitive detection of Tbg1 parasites. Annotation of the targeted minicircle sequence indicated that it encodes genes essential for the survival of the parasite and will thus likely be preserved in natural Tbg1 populations, the latter ensuring the reliability of our novel diagnostic assay

    Trypanosoma brucei gambiense-iELISA : a promising new test for the post-elimination monitoring of human African trypanosomiasis

    Get PDF
    Background: The World Health Organization targeted Trypanosoma brucei gambiense human African trypanosomiasis (gHAT) for elimination as a public health problem and for elimination of transmission. To measure gHAT elimination success with prevalences close to zero, highly specific diagnostics are necessary. Such a test exists in the form of an antibody-mediated complement lysis test, the trypanolysis test, but biosafety issues and technological requirements prevent its large-scale use. We developed an inhibition ELISA with high specificity and sensitivity that is applicable in regional laboratories in gHAT endemic countries. Methods: The T. b. gambiense inhibition ELISA (g-iELISA) is based on the principle that binding of monoclonal antibodies to specific epitopes of T. b. gambiense surface glycoproteins can be inhibited by circulating antibodies of gHAT patients directed against the same epitopes. Using trypanolysis as reference test, the diagnostic accuracy of the g-iELISA was evaluated on plasma samples from 739 gHAT patients and 619 endemic controls and on dried blood spots prepared with plasma of 95 gHAT and 37 endemic controls. Results: Overall sensitivity and specificity on plasma were respectively 98.0% (95% CI 96.7 - 98.9) and 99.5% (95% CI 98.6-99.9). With dried blood spots, sensitivity was 92.6% (95% CI 85.4 - 97.0), and specificity was 100% (95% CI 90.5 - 100.0). The g-iELISA is stable for at least 8 months when stored at 2-8°C. Conclusion: The g-iELISA might largely replace trypanolysis for monitoring gHAT elimination and for post-elimination surveillance. The g-iELISA kit is available for evaluation in reference laboratories in endemic countries

    Vignette rKOMICS application example

    No full text
    Curs 2020-2021The core features of the rKOMICS package include data aggregation, analyses and visualization that allows to examine, summarize and extract meaningful information from minicircle sequence alignments as obtained by KOMICS or a custom bioinformatic pipeline, and from USEARCH cluster format (UC) files as generated by USEARCH or VSEARCH. In addition to storing data files, rKOMICS stores the analyses and visualization results into single list objects that can be called by the user at a later stage. rKOMICS incorporates multiple methods of visualizations using the ggplot2 R package to plot the foundation of graphs. By adding ggplot2 functions to the rKOMICS visualization functions, the user has direct control over the finishing touches of the graph’s appearances. Our package also utilizes sample specific metadata that allows multi-group data visualizations to facilitate exploratory analysis. The overall data set can be examined using barplots, heatmaps, PCA plots and box plots that are generated for each specified minimum percent identity. This makes it possible to visualize population structure and diversity based on minicircle sequence composition. To show the functionality of rKOMICS, we performed an example analysis using whole-genome se quencing data from a recently published study on the history of diversification of the Leishmania brazilien sis species complex in Peru. This species complex comprises two closely related species: the lowland and zoonotic L. braziliensis parasite circulating in a diverse range of wild mammals in Neotropical rainforests, and the highland anthroponotic L. peruviana parasite that is largely endemic to the Pacific slopes of the Peruvian Andes. A total of 67 Leishmania parasites from 47 localities in Peru were cultured and subjected to whole genome sequencing

    A more sensitive, efficient and ISO 17025 validated Magnetic Capture real time PCR method for the detection of archetypal Toxoplasma gondii strains in meat

    No full text
    Toxoplasma gondii is a globally prevalent, zoonotic parasite of major importance to public health. Various indirect and direct methods can be used for the diagnosis of toxoplasmosis. Whereas serological tests are useful to prove contact with the parasite has occurred, the actual presence of the parasite in the tissues of a seropositive animal is not demonstrated. For this, a bioassay is still the reference method. As an alternative, various PCR methods have been developed, but due to the limited amount of sample that can be tested, combined with a low tissue cyst density, those have proved to be insufficiently sensitive. A major improvement of the sensitivity was achieved with magnetic capture-based DNA extraction. By combining the hybridization of specific, biotinylated probes with the capture of those probes with streptavidin-coated paramagnetic beads, T. gondii DNA can selectively be "fished out" from a large volume of meat lysate. Still, several studies showed an insufficient sensitivity compared with the mouse bioassay. Here we present a method that is more sensitive (99% limit of detection: 65.4 tachyzoites per 100g of meat), economical and reliable (ISO 17025 validated) by adding a non-competitive PCR inhibition control (co-capture of cellular r18S) and making the release of the target DNA from the streptavidin-coated paramagnetic beads UV-dependent. The presented results demonstrate the potential of the modified Magnetic Capture real time PCR as a full alternative to the mouse bioassay for the screening of various types of tissues and meat, with the additional advantage of being quantitative

    The Cullin-3-Rbx1-KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB

    No full text
    RhoGTPases control endothelial cell (EC) migration, adhesion, and barrier formation. Whereas the relevance of RhoA for endothelial barrier function is widely accepted, the role of the RhoA homologue RhoB is poorly defined. RhoB and RhoA are 85% identical, but RhoB's subcellular localization and half-life are uniquely different. Here, we studied the role of ubiquitination for the function and stability of RhoB in primary human ECs. We show that the K63 polyubiquitination at lysine 162 and 181 of RhoB targets the protein to lysosomes. Moreover, we identified the RING E3 ligase complex Cullin-3-Rbx1-KCTD10 as key modulator of endothelial barrier integrity via its regulation of the ubiquitination, localization, and activity of RhoB. In conclusion, our data show that ubiquitination controls the subcellular localization and lysosomal degradation of RhoB and thereby regulates the stability of the endothelial barrier through control of RhoBmediated EC contraction

    High-throughput analysis of the Trypanosoma cruzi minicirculome (mcDNA) unveils structural variation and functional diversity

    No full text
    Abstract Trypanosoma cruzi causes Chagas disease and has a unique extranuclear genome enclosed in a structure called the kinetoplast, which contains circular genomes known as maxi- and minicircles. While the structure and function of maxicircles are well-understood, many aspects of minicircles remain to be discovered. Here, we performed a high-throughput analysis of the minicirculome (mcDNA) in 50 clones isolated from Colombia’s diverse T. cruzi I populations. Results indicate that mcDNA comprises four diverse subpopulations with different structures, lengths, and numbers of interspersed semi-conserved (previously termed ultra-conserved regions mHCV) and hypervariable (mHVPs) regions. Analysis of mcDNA ancestry and inter-clone differentiation indicates the interbreeding of minicircle sequence classes is placed along diverse strains and hosts. These results support evidence of the multiclonal dynamics and random bi-parental segregation. Finally, we disclosed the guide RNA repertoire encoded by mcDNA at a clonal scale, and several attributes of its abundance and function are discussed
    corecore