281 research outputs found

    Computed tomography and magnetic resonance imaging of desmoplastic fibroma with simultaneous manifestation in two unusual locations: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Desmoplastic fibroma is an extremely rare primary benign bone tumor. It occurs most often in the mandible, followed by the femur and pelvis. To the best of our knowledge, fewer than 200 cases have been described in the published literature. Furthermore, this case is the first report of desmoplastic fibroma with simultaneous presentation in two different locations.</p> <p>Case presentation</p> <p>We present an unusual case of desmoplastic fibroma in a 56-year-old Caucasian man, who presented to our hospital with lumbar pain. Computed tomography and magnetic resonance imaging were performed, demonstrating two lytic expansile lesions affecting both his left iliac bone and his left sacral wing. Curettage and cortical-cancellous grafting was performed, followed by postoperative computed tomography and magnetic resonance imaging.</p> <p>Conclusion</p> <p>Desmoplastic fibroma with unusual and simultaneous manifestations in two different locations has never been reported previously to the best of our knowledge. The purpose of this case report is to present the computed tomography and magnetic resonance imaging features of this rare tumor before and after the surgical treatment. Furthermore, the radiological findings with the description of the characteristics and the clinical presentation of this rare tumor, contribute to the wide spectrum of manifestations of this tumor, in order to recognize it and to have the appropriate management.</p

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    The central image of a gravitationally lensed quasar

    Full text link
    A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts there should be an odd number of images but, paradoxically, almost all observed lenses have 2 or 4 images. The missing image should be faint and appear near the galaxy's center. These ``central images'' have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates, but in one case the third image is not necessarily a central image, and in the others, the central component might be a foreground source rather than a lensed image. Here we report the most secure identification of a central image, based on radio observations of PMN J1632-0033, one of the latter candidates. Lens models incorporating the central image show that the mass of the lens galaxy's central black hole is less than 2 x 10^8 M_sun, and the galaxy's surface density at the location of the central image is more than 20,000 M_sun per square parsec, in agreement with expectations based on observations of galaxies hundreds of times closer to the Earth.Comment: Nature, in press [7 pp, 2 figs]. Standard media embargo applies before publicatio

    A Rare Periosteal Diaphyseal Lesion of the Ulna

    Get PDF
    Periosteal lesions of the ulna diaphysis are rare, include a wide spectrum of tumors, and may cause considerable diagnostic problems. Surgical treatment may vary widely, based on an accurate diagnosis. We present the case of a periosteal, extraskeletal low grade myxoid chondrosarcoma of the ulna diaphysis. The surgical therapy included an en-bloc resection with allograft reconstruction. The patient showed a favorable outcome. Careful preoperative evaluation and planning are imperative to obtain a satisfactory oncological and functional outcome, especially with uncommon tumor presentations at rare locations

    Proximal humerus reconstruction after tumour resection: biological versus endoprosthetic reconstruction

    Get PDF
    The purpose of this study was to compare the outcome, complications and survival of the three most commonly used surgical reconstructions of the proximal humerus after transarticular tumour resection. Between 1985 and 2005, 38 consecutive proximal humeral reconstructions using allograft-prosthesis composite (n = 10), osteoarticular allograft (n = 13) or a modular tumour prosthesis (n = 14) were performed in our clinic. The mean follow-up was ten years (1–25). Of these, 27 were disease free at latest follow-up (mean 16.8 years) and ten had died of disease. The endoprosthetic group presented the smallest complication rate of 21% (n = 1), compared to 40% (n = 4) in the allograft-prosthesis composite and 62% (n = 8) in the osteoarticular allograft group. Only one revision was performed in the endoprosthetic group, in a case of shoulder instability. Infection after revision (n = 3), pseudoarthrosis (n = 2), fracture of the allograft (n = 3) and shoulder instability (n = 4) were the major complications of allograft use in general. Kaplan-Meier analysis showed a significantly better implant survival for the endoprosthetic group (log-rank p = 0.002). At final follow-up the Musculoskeletal Tumour Society scores were an average of 72% for the allograft-prosthetic composite (n = 7, median follow-up 17 years), 76% for the osteoarticular allograft (n = 3, 19 years) and 77% for the endoprosthetic reconstruction (n = 10, 5 years) groups. An endoprosthetic reconstruction after transarticular proximal humeral resection resulted in the lowest complication rate, highest implant survival and comparable functional results when compared to allograft-prosthesis composite and osteoarticular allograft use. We believe that the surgical approach that best preserves the abductor mechanism and provides sufficient surgical exposure for tumour resection contributed to better functional results and glenohumeral stability in the endoprosthetic group

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model

    Get PDF
    During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    On the cosmic evolution of the scaling relations between black holes and their host galaxies: Broad Line AGN in the zCOSMOS survey

    Get PDF
    (Abriged) We report on the measurement of the rest frame K-band luminosity and total stellar mass of the hosts of 89 broad line Active Galactic Nuclei detected in the zCOSMOS survey in the redshift range 1<z<2.2. The unprecedented multiwavelength coverage of the survey field allows us to disentangle the emission of the host galaxy from that of the nuclear black hole in their Spectral Energy Distributions. We derive an estimate of black hole masses through the analysis of the broad Mg II emission lines observed in the medium-resolution spectra taken with VIMOS/VLT as part of the zCOSMOS project. We found that, as compared to the local value, the average black hole to host galaxy mass ratio appears to evolve positively with redshift, with a best fit evolution of the form (1+z)^{0.68 \pm0.12 +0.6 -0.3}, where the large asymmetric systematic errors stem from the uncertainties in the choice of IMF, in the calibration of the virial relation used to estimate BH masses and in the mean QSO SED adopted. A thorough analysis of observational biases induced by intrinsic scatter in the scaling relations reinforces the conclusion that an evolution of the MBH-M* relation must ensue for actively growing black holes at early times: either its overall normalization, or its intrinsic scatter (or both) appear to increase with redshift. This can be interpreted as signature of either a more rapid growth of supermassive black holes at high redshift, a change of structural properties of AGN hosts at earlier times, or a significant mismatch between the typical growth times of nuclear black holes and host galaxies.Comment: 47 pages, 8 figures. Accepted for publication in Ap

    Supermassive black holes do not correlate with galaxy disks or pseudobulges

    Full text link
    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they appear not to correlate with galaxy disks. Disk-grown pseudobulges are intermediate in properties between bulges and disks. It has been unclear whether they do or do not correlate with black holes in the same way that bulges do, because too few pseudobulges were classified to provide a clear result. At stake are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and galaxies with pseudobulges grow as low-level Seyferts. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.Comment: 6 pages, 3 Postscript figures, 1 table; to appear in Nature (20 January 2011
    corecore