65 research outputs found

    Predicting the Distribution of Spiral Waves from Cell Properties in a Developmental-Path Model of Dictyostelium Pattern Formation

    Get PDF
    The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers). This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path

    On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment

    Get PDF
    de Angelis T, Federico S, Ferrari G. On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment. Center for Mathematical Economics Working Papers. Vol 509. Bielefeld: Center for Mathematical Economics; 2014.This paper examines a Markovian model for the optimal irreversible investment problem of a firm aiming at minimizing total expected costs of production. We model market uncertainty and the cost of investment per unit of production capacity as two independent one-dimensional regular diffusions, and we consider a general convex running cost function. The optimization problem is set as a three-dimensional degenerate singular stochastic control problem. We provide the optimal control as the solution of a Skorohod reflection problem at a suitable free-boundary surface. Such boundary arises from the analysis of a family of two-dimensional parameter-dependent optimal stopping problems and it is characterized in terms of the family of unique continuous solutions to parameter-dependent nonlinear integral equations of Fredholm type

    Advantages of Randomization in Coherent Quantum Dynamical Control

    Get PDF
    Control scenarios have been identified where the use of randomized design may substantially improve the performance of dynamical decoupling methods [L. F. Santos and L. Viola, Phys. Rev. Lett. {\bf 97}, 150501 (2006)]. Here, by focusing on the suppression of internal unwanted interactions in closed quantum systems, we review and further elaborate on the advantages of randomization at long evolution times. By way of illustration, special emphasis is devoted to isolated Heisenberg-coupled chains of spin-1/2 particles. In particular, for nearest-neighbor interactions, two types of decoupling cycles are contrasted: inefficient averaging, whereby the number of control actions increases exponentially with the system size, and efficient averaging associated to a fixed-size control group. The latter allows for analytical and numerical studies of efficient decoupling schemes created by exploiting and merging together randomization and deterministic strategies, such as symmetrization, concatenation, and cyclic permutations. Notably, sequences capable to remove interactions up to third order are explicitly constructed. The consequences of faulty controls are also analyzed.Comment: 27 pages, 7 figure
    • …
    corecore