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Abstract. Control scenarios have been identified where the use of randomized
design may substantially improve the performance of dynamical decoupling
methods (Santos and Viola 2006 Phys. Rev. Lett. 97 150501). Here, by focusing
on the suppression of internal unwanted interactions in closed quantum systems,
we review and further elaborate on the advantages of randomization at long
evolution times. By way of illustration, special emphasis is devoted to isolated
Heisenberg chains of coupled spin-1/2 particles. In particular, for nearest-
neighbor interactions, two types of decoupling cycles are contrasted: inefficient
averaging, whereby the number of control actions increases exponentially with
the system size, and efficient averaging associated to a fixed-size control
group. The latter allows for analytical and numerical studies of efficient
decoupling schemes created by exploiting and merging together randomization
and deterministic strategies, such as symmetrization, concatenation and cyclic
permutations. Notably, sequences capable of removing interactions up to third
order in the achievable control timescale are explicitly constructed, and a
numerical algorithm to search for optimal decoupling sequences is proposed.
The consequences of faulty controls in deterministic versus randomized schemes
are also analyzed.
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1. Introduction

Dynamical decoupling (DD) provides a versatile control-theoretic setting for manipulating the
dynamics of closed as well as open quantum systems. DD schemes operate by subjecting the
system of interest to suitable sequences of external control operations, with the purpose of
removing or modifying unwanted contributions to the underlying Hamiltonian. DD methods
have a long history in high-resolution nuclear magnetic resonance (NMR) [1]–[3], where
coherent averaging ideas have been pioneered in the context of averaging out undesired phase
evolution [4, 5] and dipolar interactions [6] in spin systems. More recently, DD has emerged
as a promising strategy toward achieving scalable quantum information processing (QIP),
thanks to its potential for protecting logical quantum states against always-on qubit–qubit
interactions and for reducing environmental decoherence. The latter possibility was first
explicitly demonstrated in [7]—where suppression of decoherence via a sequence of very
fast (so-called bang–bang) control actions is established for a single qubit interacting with a
bosonic environment—and it was soon incorporated within a general dynamical symmetrization
framework [8, 9]—whereby the DD operations are drawn from a discrete control group
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so to effectively project out components with unintended symmetry. Since then, DD has
become the subject of intense theoretical and experimental investigations. On the theoretical
side, some notable advances include: the construction of bounded-strength Eulerian [10]
and concatenated DD (CDD) protocols [11, 12], as well as efficient combinatorial schemes
for multipartite systems [13]–[16]; the identification of optimized control sequences capable
to ensure exact high-order cancellation of pure dephasing in a single qubit [17, 18];
proposed applications within specific (notably, solid-state) scalable quantum computing
architectures [19]; quantitative investigations of DD schemes for compensating specific
decoherence mechanisms, such as magnetic state decoherence in atomic systems [20], 1/ f noise
in superconducting devices [21]–[25], and hyperfine- as well as phonon-induced decoherence
in quantum dots [26]–[31]; control procedures for combining DD with universal quantum
computation [32, 33]. Within experimental QIP, DD techniques have been successfully applied
to decoherence control in a single-photon polarization interferometer [34]; have found extensive
applications in liquid-state NMR QIP [35], also in conjunction with error-correcting codes [36];
have inspired charge-based [37] and flux-based [38] echo experiments in superconducting
qubits; and are being scrutinized for further applications in solid-state systems such as nuclear
quadrupole qubits [39] and fullerene qubits [40].

Even if, in the limit where no control constraint is present and under appropriate
mathematical assumptions, DD techniques may guarantee the exact elimination of all the
undesired coupling, a main limitation is the fact that, in general, such an exact averaging
is practically impossible. Residual errors arising from finite control rates and imperfect
averaging accumulate in time and eventually result in loss of fidelity. In order to slow
down error accumulation, randomization may be incorporated into DD design, as proposed
in [41, 42]. In a sense, this is reminiscent of compensation schemes, which are routinely
used in NMR spectroscopy to reduce the effects of known errors introduced by non-ideal
control [1, 3]. Essentially, randomization aims at compensating for imperfect averaging by
enforcing probabilistic error build-up at long times, the overall coherent DD action being
retained provided the applied control history is appropriately recorded [41, 42]. Beside long-
time averaging, analytical errors bound in [41, 42] identified two other scenarios where
randomized protocols would be expected to perform better than their deterministic counterparts:
firstly, whenever the basic decoupling cycle requires a large number of control operations;
and, secondly, when the interactions to be removed are uncertain, for instance unpredictably
fluctuating in time. This prompted a series of quantitative studies to validate the advantages of
randomization in the context of DD [43]–[48], and ultimately added quantum control to the
list of problems benefiting from stochasticity; a list which already includes diverse phenomena
ranging from the possibility to maximize weak signals by stochastic resonance [49], the idea that
chaos may stabilize quantum algorithms [50], and yet, more recently, the fact that randomization
may be used to benchmark noisy quantum gates in QIP [51].

It is the purpose of this work to both comprehensively review and further analyze the
advantages of randomized coherent-control methods at long evolution times. We focus on
the representative case of suppression of internal interactions in a time-independent spin-1/2
Heisenberg-coupled system. In order to pinpoint the origin of the advantages coming from
randomization, two scenarios are considered: averaging over an inefficient DD group, whose
size increases exponentially with the number of spins; and averaging over a small, fixed-size
group. The first case allows for a numerical comparison between deterministic and randomized
schemes as the group size increases. The second lends itself to a detailed analytical study of
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various high-level deterministic schemes, which employ symmetrization, concatenation, and
cyclic permutations—eventually leading to the identification of best-performing deterministic
DD scheme. The incorporation and analysis of different randomized strategies to further boost
the performance of the resulting deterministic schemes is then carried out numerically.

Ultimately, the key idea for efficient averaging at long times is frequent scrambling of
the order of the applied DD operations, so that residual errors do not get a chance to rapidly
accumulate in time. While this idea is at the heart of randomized methods, a natural question is
why randomization would have to be invoked in the first place: what prevents one from finding
an optimal deterministic sequence for a specific system and a particular final time? The problem
lies in the fact that, due to the rapidly growing number of possible control trajectories associated
with different sequences as the system size increases, combined with the strong dependence of
protocol performance on the final time, such search becomes typically intractable in practice.
We illustrate this point by developing a numerical algorithm to obtain the best DD sequence
under some constraints imposed to the controls. Although very efficient, the resulting sequence
is still outperformed by a considerably simpler randomized protocol. We therefore advocate that,
for long evolution times, a much less demanding and yet very efficient DD approach consists of
cleverly combining good deterministic strategies with randomization.

The content of the paper is organized as follows. Sections 2–4 provide a self-contained
review and/or introduction of background material relevant to the subsequent discussion.
In section 2, in particular, the theoretical framework of DD is briefly recalled, along with
the performance metric and interaction frames to be considered. Section 3 describes the
deterministic and randomized protocols under examination and present analytical lower bounds
for their expected performance under ideal control assumptions. Section 4 describes the physical
models of interest and highlights the main control requirements. Focus is given to systems with
nearest-neighbor (NN) couplings and to the ability to selectively address individual subsystems.
Section 5 provides an in-depth analysis of results partly appeared in [46, 47], by assessing
how the performance of deterministic and randomized schemes depend on the size of the DD
group. Schemes involving a large degree of parallelism emerge as best performers, consistent
with intuition. The bulk of new material is presented in sections 6 and 7. Section 6 develops a
quantitative comparison between deterministic and randomized schemes, as well as between
different venues for including randomization, and contrasts the performance obtained for
different physical systems within the class of interest. New results include analytical studies
for high-level deterministic schemes, leading in particular to the identification of DD sequences
capable of removing NN interactions up to the third order in the appropriate Magnus expansion;
and a numerical procedure, inspired to genetic algorithms, to search for efficient DD sequences.
Previous works have failed to compare deterministic and randomized DD protocols in the
presence of some dominant control errors. This gap is filled in section 7. Conclusions are
provided in section 8, whereas a number of technical considerations are left for the appendix.

2. DD framework

2.1. Control setting

As mentioned, DD methods have long been applied in NMR spectroscopy [1]–[3], [5], where
the aim is to modify the nuclear spin Hamiltonian to suppress or scale selected internal
interactions. More recently, DD has been revisited in the light of quantum control theory, by also
explicitly addressing, in particular, the removal of interactions between the system of interest
and the surrounding environment [7, 8]. In both cases, the basic idea consists in adding a
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time-dependent control field Hc(t) to the Hamiltonian H0 of the relevant target system. In
the physical (Schrödinger) frame, the evolution operator under the total Hamiltonian H(t)=

H0 + Hc(t) becomes U (t)= T exp[−i
∫ t

0 H(u) du], where h̄ is set equal to 1 and T denotes
time ordering. Most commonly, the analysis of DD methods is performed in a logical frame
(also known as ‘toggling frame’ in the NMR literature), which corresponds to a time-dependent
interaction representation that follows the applied control. In this frame, the Hamiltonian is
written as

H̃ 0(t)= U †
c (t)H0Uc(t), (1)

where Uc(t)= T exp[−i
∫ t

0 Hc(u) du] is the control propagator at time t , and the logical
evolution operator becomes

Ũ (t)= U †
c (t)U (t)= T exp

[
−i
∫ t

0
H̃ 0(u) du

]
. (2)

In this work, we shall focus on an isolated (closed) finite-dimensional system S, controlled
through a sequence of equally spaced control pulses, Pk , applied at times tk , k ∈ N (t0 = 0).
The pulses average out the effects of unwanted interactions by repeatedly rotating the system
and undoing its internal (drift) evolution. In the limiting situation of arbitrarily strong and
instantaneous pulses—the above-mentioned bang–bang setting [7]—the evolution during the
pulses depends only on the control Hamiltonian, whereas during the intervals 1t = tk − tk−1,
the system evolves freely according to H0. The propagator at tn = n1t , n ∈ N, then reads

U (tn)= PnU (tn, tn−1)Pn−1U (tn−1, tn−2) . . . P1U (t1, 0)P0

=(Pn Pn−1 . . . P1 P0)︸ ︷︷ ︸ (Pn−1 . . . P1 P0)
†U (tn, tn−1)(Pn−1 . . . P1 P0). . .U (t2, t1)(P1 P0)P

†
0 U (t1, 0)P0︸ ︷︷ ︸ .

Uc(tn) Ũ (tn) (3)

The design of multi-pulse sequences is based on the desired form of the effective
propagator at a final evolution time T > 0. To derive the time evolution operator, different
methods have been employed, including Fer’s expansion, which gives an exponential infinite-
product expansion of Ũ (T ) [52]–[55], and average Hamiltonian theory (AHT), which makes
use of the Magnus expansion to represent Ũ (T ) in terms of a single exponential [1, 2]. Since
the latter will be the main tool considered here, it is briefly described next. From equation (3),
we may rewrite

Ũ (tn)= exp
[
−i(Pn−1 . . . P0)

† H0(Pn−1 . . . P0)1t
]
. . . exp

[
−i(P1 P0)

† H0(P1 P0)1t
]

× exp
[
−iP†

0 H0 P01t
]

= exp [−iHn1t] . . . exp [−iH21t] exp [−iH11t]

= exp [−iHeff(tn)tn] ,

where we have used the notation Hn = (Pn−1 . . . P0)
† H0(Pn−1 . . . P0) for each transformed

Hamiltonian during a given segment of evolution, and the Magnus expansion
(or Baker–Campbell–Hausdorff expansion, since the Hamiltonian is piecewise constant in
time) [1, 2, 56] to obtain the last equality. In the explicit expression of the effective Hamiltonian
Heff(tn)=

∑
∞

k=0 H̄ (k)(tn), each term H̄ (k)(tn) involves k time-ordered commutators of trans-
formed Hamiltonians.

The convergence of the Magnus expansion depends strongly on the representation
considered, and examples exist in the literature of its failure at long times, see e.g. [57]. Explicit
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evaluations of the convergence radius have been obtained for specific systems, in particular for a
two-level system [57]–[61], while general sufficient conditions for the absolute convergence of
the expansion have been recently established, see e.g. [62] and references therein. Interestingly,
it has also been shown that by connecting the Magnus expansion with rooted trees, a recursive
procedure to generate the expansion terms and a convergence proof become available [63, 64].

So far, no assumptions have been made in regard to the control field, which may, in
principle, have either deterministic or non-deterministic features. While specific protocols
within each setting will be described in section 3, the essential difference between deterministic
and randomized design is that in the latter case the future control path is not known, but
rather, in the simplest instance, effects a suitable random walk [41]. In the particular case
of a deterministic time-dependent perturbation which is cyclic, that is, when the control
Hamiltonian and the control propagator are periodic with cycle time Tc, Hc(t + nT c)= Hc(t)
and Uc(t + nT c)= Uc(t), it follows from equations (1) and (2) that the logical Hamiltonian is
also periodic, and Heff(Tn)= H̄ for any Tn = nT c. At these instants, the system in the logical
frame appears to evolve under a time-independent average Hamiltonian H̄ =

∑
∞

k=0 H̄ (k), and the
condition κTc < 1, with κ =‖H0‖2= max|eig(H0)| [1, 2, 41, 57], may be taken as a guideline for
the Magnus series convergence. The stroboscopic time propagator becomes

Ũ (nTc)= Ũ (Tc)
n
= e−iH̄nTc .

Thus, describing the system at any multiple integer of Tc only requires the computation of
the system’s evolution after a single cycle. This constitutes the main result of AHT, and is also
directly applicable to the physical frame: since Uc(nTc)= 1, physical and logical frames overlap
stroboscopically at Tn, U (nTc)= Ũ (nTc).

For the deterministic DD sequences of relevance to this work, the first term of the average
Hamiltonian H̄ , namely H̄ (0), may be cast in terms of a group-theoretic average [8]. In this
case, control pulses are successively drawn from a (projective) representation of a finite DD
group G = {g j}, j = 0, . . . , |G| − 1, with |G| giving the order of the group. The propagator after
a control cycle, t = Tc = |G|1t , is written as

Ũ (Tc)=

|G|−1∏
j=0

U j+1, (4)

where

U j+1 = g†
j U (t j+1, t j)g j , H j+1 = g†

j H0g j , Pj+1 = g j+1g†
j , P0 = g0, (5)

The zeroth-, first- and second-order terms of the Magnus expansion are now, respectively,
given by

H̄ (0)
=
1t

Tc

|G|∑
k=1

Hk,

H̄ (1)
= −

i(1t)2

2Tc

|G|∑
l=2

l−1∑
k=1

[Hl, Hk],

H̄ (2)
= −

(1t)3

6Tc

{ |G|∑
m=3

m−1∑
l=2

l−1∑
k=1

{
[Hm, [Hl, Hk] + [Hm, Hl], Hk]

}
+

1

2

n∑
l=2

l−1∑
k=1

{
[Hl, [Hl, Hk] + [Hl, Hk], Hk]

}}
.

New Journal of Physics 10 (2008) 083009 (http://www.njp.org/)

http://www.njp.org/


7

In designing a DD scheme, one seeks an appropriate DD group G which may ‘reshape’ the
target Hamiltonian as desired. The primary goal is to tackle the dominant term H̄ (0), whose
modification may be sufficient in the ideal limit of Tc → 0 or when dealing with very short
evolution times. However, in realistic settings, and especially when long evolution times are
involved, as in the current work, the role of higher order terms becomes critical, and strategies
to reduce their effects are imperative.

2.2. Performance metric

Our main control objective in this work will be to achieve a ‘no-op’ gate or, in NMR
terminology, a ‘time suspension’—that is, to freeze the system by completely refocusing the
Hamiltonian evolution and making Ũ (T ) as close as possible to the identity, 1, for a desired
finite time T . One way to quantify how successfully such objective is achieved relies on
quantifying the input–output fidelity in the logical frame,

F̃ρ(T )= Tr[ρ̃(T )ρ(0)], (6)

where ρ(0) is an arbitrary initial state of the system and ρ̃(T )= Ũ (T )ρ(0)Ũ
†
(T ). Arbitrary

state preservation corresponds to the maximum value F̃ρ(T )= 1. For a pure initial state |ψ〉,
the above fidelity rewrites as

F̃ |ψ〉(T )= |〈ψ |Ũ (T )|ψ〉|
2. (7)

A disadvantage associated with F̃ |ψ〉(T ) is its intrinsic state dependence, a characteristic not
suitable for a metric intended to assess dynamical protocol performance. In this sense, it would
be more appropriate to invoke the pure state that leads to the worst-case pure state fidelity [41].
However, the drawback associated with this option is practical unfeasibility, since searching for
the worst |ψ〉 is not operational, except for very small systems. Obtaining a control metric which
is at same time state-independent and efficiently computable is possible by shifting attention
from worst-case to typical input-state performance, as captured by so-called entanglement
fidelity, Fe [65].

Entanglement fidelity is defined with respect to an initial entangled state |ψ RS
〉 of the

system S and a reference system R as Fe(ρ
S, E S)= Tr{|ψ RS

〉〈ψ RS
|ρRS′

}, where ρRS′

is the
final state subjected to the evolution 1R

⊗ E S. By using the operator-sum representation,
E S

=
∑

µ AS
µρ

S AS†
µ , Fe may be written in terms of quantities of the system only, Fe(ρ

S, E S)=∑
µ |Tr{ρS AS

µ}|
2. For a closed system, AS

µ = U , and the entanglement fidelity associated with a
(any, in fact) maximally entangled purification |ψ RS

〉—thereby a maximally mixed state for S,
ρS

= 1S/d—assumes the simple form Fe(T )= |Tr[U (T )]/d|
2 [66], where d is the dimension

of the system state space. Protocol performance may then be evaluated solely in terms of the
system propagator. It is worth noting that a linear relationship exists between Fe and the average
fidelity F̄ over all initial pure states, F̄ = (d Fe + 1)/(d + 1), as established in [67, 68].

By its own nature, randomized DD methods involve various control realizations, each
leading to a different value of fidelity. Thus, control performance in this case is estimated in
terms of an appropriate statistical average over individual results. In the logical frame, denoting
by E the ensemble expectation over all control realizations, the expected entanglement fidelity
is given by

E{F̃ e(T )} = E{|Tr[Ũ (T )]/d|
2
}. (8)
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Complete refocusing then translates into achieving E{F̃ e(T )} → 1. In the numerical Monte
Carlo studies performed in what follows, ensemble expectation is replaced by the more viable
statistical average over a sufficiently large sample of control realizations, which we designate
by 〈〈F̃ e(T )〉〉.

2.3. Logical versus physical frame

The logical representation is a convenient theoretical tool used to facilitate the design of pulse
sequences. However, experiments are performed in the physical frame, so this is where our
specific control objective needs to be achieved. When dealing with periodic sequences, these
differences are irrelevant, since measurements are usually performed at the end of a cycle, where
the two frames coincide. However, if one decides to observe the system in between cycles or
deals with acyclic pulse sequences (as it is inevitably the case in randomized DD), correcting
pulses Pc(t) may be required to guarantee the final desired effect in the physical frame. It
then becomes necessary to keep track of the applied pulses, because Pc(tn) at an arbitrary tn

is determined by the control propagator Uc(tn) as

Pc(tn)= Uc(tn)
†
= (Pn Pn−1 . . . P2 P1 P0)

†. (9)

Consider, for example, the case of quantum information storage. Restricting ourselves to
achieving Ũ (T )→ 1 is equivalent, from the physical frame perspective, to assuring that the
system evolution is dictated only by the control, U (T )→ Uc(T ). This is clearly reflected in
equation (6), which, by using equation (2), may be rewritten as

F̃ρ(T )= Tr[ρ̃(T )ρ(0)] = Tr[ρ(T )ρc(T )], (10)

where ρ(T )= U (T )ρ(0)U †(T ) and ρc(T )= Uc(T )ρ(0)U †
c (T ). Thus, to freeze the system in

the physical frame also, conditional to a given control history, we need a correcting pulse that
un-does Uc(T ), so that upon correction Fρ(T )= Tr[ρ(T )ρ(0)] → 1, as desired.

Notice that in quantum information storage, frame correction and signal acquisition are
performed only once, at the final time T . However, when data need to be constantly acquired,
such as in standard line-narrowing NMR spectroscopy experiments, frequently applying
frame-correcting pulses may be experimentally demanding, besides introducing additional
errors. In such cases, it may be worth designing control schemes which need not be cyclic,
but already incorporate appropriate ‘observation windows’—an example is given in section 3.3.

3. DD design

In this section, we outline several deterministic and randomized DD schemes and discuss
lower bounds for their attainable fidelity. Better performance depends on the protocol
capabilities to increase averaging accuracy in the effective Hamiltonian and to slow down the
accumulation of residual averaging errors. Symmetrization, concatenation, cyclic permutations
and randomization are the key design principles exploited to generate efficient schemes. In
comparison to our previous works [46, 47], two important novel features here are the inclusion
of cyclic permutations (see (iv) in section 3.1) and the embedding of high-level deterministic
protocols with random pulses (see (iii) in section 3.2).

New Journal of Physics 10 (2008) 083009 (http://www.njp.org/)

http://www.njp.org/


9

3.1. Deterministic protocols

We shall assume that the first group element for deterministic protocols is always g0 = 1, or
equivalently, that the first pulse occurs only after an initial time delay 1t .

(i) The simplest deterministic protocol is a cyclic scheme based on a fixed, pre-determined
control path of a specific representation of G, leading to first-order decoupling, H̄ (0)

= 0.
Any such scheme is referred to as periodic DD (PDD). Following equation (4), the logical
propagator for PDD at Tc is given by

ŨPDD(Tc)=

(
g†

|G|−1U (|G|1t, (|G| − 1)1t)g|G|−1

)
. . .
(

g†
2U (31t, 21t)g2

)
×

(
g†

1U (21t,1t)g1

) (
g†

0U (1t, 0)g0

)
,

which we compactly write as

ŨPDD(Tc)= [U|G| . . .U3U2U1].

Tc will refer to the cycle time of the PDD sequence henceforth. Our goal, however, is to
push beyond PDD, by designing protocols able to reduce higher order terms in the average
Hamiltonian. Three main strategies are considered.

(ii) In analogy with the well-known Carr–Purcell sequence of NMR [5], we may time-
symmetrize the PDD control path. This leads to what we call symmetric deterministic DD
(SDD). The cycle becomes twice as long, T

SDD

c = 2Tc, but all odd order terms in H̄0 are also
canceled [1, 2]. In compact notation, the propagator becomes

Ũ SDD(2Tc)= [U1U2U3 . . .U|G|]︸ ︷︷ ︸ [U|G| . . .U3U2U1].

[sym]

(iii) In concatenated DD (CDD), the basic PDD sequence works as a ‘seed’ which is being
recursively embedded within itself [11, 12]. At level of concatenation (`+ 1), the pulse
sequence in the physical frame is determined by C`+1 = C`P1C`P2 . . .C`P|G|, where C0

denotes the interval of free evolution and C1 is the generating inner PDD sequence. Level
(`+ 1) is then reached at time T = |G|`Tc. In terms of group elements, since g0 = 1, we
may write

Ũ CDD(`+1)(|G|
`Tc)=

(
g†

|G|−1Ũ CDD`g|G|−1

)
. . .
(

g†
2Ũ CDD`g2

) (
g†

1Ũ CDD`g1

) (
Ũ CDD`

)
.

Note that at `= 2, the above concatenated sequence is also symmetric, but, interestingly,
it may outperform SDD even before this level of concatenation is completed, as analytically
justified for the system considered here in section 6.1.3. This reflects CDD efficiency in
reducing higher order terms in the effective Hamiltonian. Also notice that if data is acquired
before the completion of a given concatenation level, correcting pulses may be required
to compensate for frame mismatch. Besides, CDD design is not cyclic. A periodic (or
supercycle) version may be obtained by truncating the scheme at a certain level `, and
then periodically repeating it at every T = n|G|`−1Tc—this protocol is denoted PCDD`.

(iv) Yet another alternative is motivated by the Malcolm Levitt’s (MLEV) broadband
decoupling sequence used in NMR [69]–[71], which will be referred to as symmetric cyclic
permutation based DD (SCPD). This pulse sequence combines symmetrization and cyclic
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permutations of the group elements in the following way. At what we call first level, m = 1,
SCPD and SDD coincide. The cyclic permutations initiate at level 2, being restricted to the
PDD part of the sequence as

Ũ SCPD2(2|G|Tc)= [sym][U1U|G| . . .U3U2]︸ ︷︷ ︸ . . .
A|G|

[sym][U|G|−1 . . .U3U2U1U|G|︸ ︷︷ ︸] [sym][U|G| . . .U3U2U1]︸ ︷︷ ︸ ·

A2 A1

From the third level on, the sequence for m + 1 is based on permutations of the entire
sequence obtained at m, being concluded at T = 2|G|mTc. Following this rule, at m = 3 we
have

Ũ SCPD3(2|G|2Tc)= [A1 A|G| . . . A3 A2]︸ ︷︷ ︸ . . . [A|G|−1 . . . A3 A2 A1 A|G|︸ ︷︷ ︸] [A|G| . . . A3 A2 A1]︸ ︷︷ ︸ .
B|G| B2 B1

Similarly to PCDD`, PSCPDm corresponds to a SCPD sequence truncated at level m and
repeated at every T = 2n|G|m−1Tc.

A main disadvantage of periodically repeated sequences is that residual errors due to
high-order terms in H̄ accumulate coherently. However, this build-up slows down if the path to
traverse G is constantly being changed, as indeed happens in both CDD and SCPD. This strategy
is pushed to its limits by the use of randomization, as described next.

3.2. Randomized protocols

(i) The most straightforward randomized DD protocol is obtained by picking elements
uniformly at random over G (notice that the relevant Haar measure is simply given by
1/|G| in our discrete setting), such that the control action at each tn = n1t (t0 = 0 included)
corresponds to P (r)

= gi g
†
j , where i, j = 0, . . . , |G| − 1. This leads to the so-called naïve

random decoupling (NRD)—an intrinsically acyclic method, which therefore prevents the
direct use of AHT. The logical propagator at T = n1t for each of the |G|n possible
realizations is

Ũ NRD(n1t)= [Urn . . .Ur2Ur1],

where

r1, r2, . . . , rn ∈ R and R = {1, 2, . . . , |G|}.

Comparing the two basic deterministic and randomized schemes, PDD and NRD, the first is
expected to perform better at short times, because it leads to H̄ (0)

= 0, whereas no guarantee
exists of achieving Heff(n|G|1t)∝1t with NRD. On the other hand, at long evolution times,
NRD is expected to outperform PDD, since residual error accumulation is slower. To ensure
good performance at both short and long times it is then natural to seek for ways to merge
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advantageous deterministic and stochastic features in a single DD scheme. With this goal in
mind, we now describe several high-level alternatives for randomized protocols, which may be
thought as involving different choices for an ‘inner’ and an ‘outer’ control code [46]. The inner
code establishes the pulse sequence to be employed in certain intervals of the total final time and
aims at increasing the minimum power of 1t in the effective Hamiltonian, thereby improving
short-time performance. The outer code determines the random pulses applied at the borders of
such intervals, with the objective of reducing error accumulation.

(ii) A natural option corresponds to combining a fixed PDD sequence used in the interval
[n, (n + 1)]|G|1t with random pulses P (r) at Tn = n|G|1t . The bordering pulses may or
may not be drawn from the same group G. In the first case, embedded DD 1 (EMD1), the
logical propagator at T = |G|1t for each of the |G| possible realizations is

Ũ EMD1(|G|1t)= g†
j [U|G| . . .U3U2U1]g j .

As an example of the second case, we mention the protocol implemented in [43], here
called EMD2. The inner sequence corresponds to a PDD based on a certain group G, while
the bordering pulses are drawn uniformly at random from the irreducible Pauli group
GP

= ⊗iGi , where Gi = {1i , X i , Yi , Z i}, i = 1, 2, . . . , N , where N is the total number of
qubits and X i , Yi , Z i are the Pauli matrices associated with each i . At T = |G|1t , there are
4N possible realizations and the propagator for each one is given by

Ũ EMD2(|G|1t)= g†
p[U|G| . . .U3U2U1]gp, gp ∈ GP.

Since the number of realizations in EMD2 is usually much larger than in EMD1, error
accumulation in the former is slower. In practice, however, situations may be encountered
where control access is restricted to a single group.

(iii) The use of PDD as the inner code guarantees only that an effective Hamiltonian with
norm of O(1t) is obtained. To ensure higher powers in 1t , we may embed with random
pulses higher level deterministic protocols, such as SDD, PCDD` and PSCPDm , which lead to
schemes, respectively, denoted here by ESDD, EPCDD` and EPSCPDm .

(iv) Another disadvantage of having a PDD sequence as the inner code is the fact that its
performance may vary significantly depending on the specific path chosen to traverse
G. In cases where searching for the best option is costly, such as when G is large, a
better alternative consists in randomly choosing at every Tn = n|G|1t a control path to
traverse the group, leading to so-called random path DD (RPD) [41, 46, 47]. This scheme
becomes yet more promising if the random paths are symmetrized in the same manner as
in SDD, leading to symmetric random path DD (SRPD) [45]–[47]. The logical propagator at
T = 2|G|1t for each of the |G|! realizations is then given by

Ũ SRPD(2|G|1t)= [sym][Us|G | . . .Us3Us2Us1],

s1 ∈ R, s2 ∈ R − {s1}, . . . , s|G| ∈ R − {s1, s2, s3, . . . , s|G|−1}.

Since randomized protocols are intrinsically acyclic, correcting pulses are usually
necessary before acquiring data. As mentioned, schemes which contain suitable
observation windows may then be useful. For example, we mention a pseudo-RPD: in
this case, path randomization is restricted by the condition of having g†

0U (1t)g0 at
every interval [n|G|1t, (n|G| + 1)1t], which ensures that physical and logical frames then
coincide.
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3.3. Performance lower bounds

Analytical bounds on the expected fidelity decay offer insight on relative strengths and
weaknesses of the proposed DD schemes. Here, we both review existing error bounds and
extend them to some of the new protocols of interest.

In the limit of sufficiently short time, ‖H0‖2 T < 1, following [41, 43] and expanding
equation (7) to second order in T , the evolution in the logical frame of the fidelity for PDD
may be written as

F̃ |ψ〉(T )= |〈ψ |e−iH̄ T
|ψ〉|

2
≈ 1 − (〈ψ |H̄ 2

|ψ〉 − 〈ψ |H̄ |ψ〉
2)T 2 +O(T 3).

An upper bound for (1H̄)2 = 〈ψ |H̄ 2
|ψ〉 − 〈ψ |H̄ |ψ〉

2 is given by the norm of H̄ as (1H̄)2 6
‖H̄‖

2
2. In addition, the norm of the average Hamiltonian may also be bounded by ‖H̄‖26∑

∞

j=0 κ(κTc)
j , which finally leads to

F̃ |ψ〉(T )> 1 −

 ∞∑
j=0

κ(κTc)
j

2

T 2.

A major factor influencing the performance of a deterministic protocol is its ability to suppress
dominant terms in H̄ . Assuming that the convergence condition κTc < 1 is satisfied, and
recalling the linear relation between F̄ and F̃ e, we infer the following properties:

• PDD cancels H̄ (0), therefore ‖H̄‖26 κ2Tc/(1 − κTc). The limit ‖H̄‖2 T < 1 implies
κ2TcT < 1 − κTc, which then leads to F̃ e(T )> 1 −O(κ4(|G|1t)2 T 2).

• SDD cancels H̄ (0) and H̄ (1), thus ‖H̄‖26 κ3T 2
c /(1 − κTc), thereby F̃ e(T )> 1 −

O(κ6(|G|1t)4 T 2).

The derivation of lower bounds for the performance of CDD (SCPD) is not straightforward,
depending on three factors: the level of concatenation (permutation), the model system and
the decoupling group considered. Beside [12], this is better discussed in section 4, where the
dominant terms of H̄ are explicitly computed for some particular models. Here, we simply
mention that when compared to PDD and SDD, PCDD (` > 1) and PSCPD (m > 1) are usually
more efficient in reducing higher order terms in the average Hamiltonian.

Contrasted with periodic methods, where residual errors due to higher order terms in H̄
build up coherently (hence quadratically in time), the fidelity for random protocols decays
linearly in time. This may be justified as follows:

• Each step of NRD can accumulate an error amplitude up to κ1t , and during a time T there
are T/1t such intervals. Due to randomization, amplitudes add up probabilistically, which
leads to E{F̃ e(T )}> 1 −O(κ21tT ). The formal derivation of this bound in the limit of
κ21tT � 1 is presented in [41].

The reasoning is similar for the other protocols, although now each step corresponds to the
interval q|G|1t , where q = 1 for EMD1, EMD2 and RPD and q = 2 for SRPD. The bound becomes
E{F̃ e(T )}> 1 −O(‖Heff‖

2
2 |G|1tT ), the norm of the effective Hamiltonian being an important

difference between protocols.

• EMD1, EMD2 and RPD lead to E{F̃ e(T )}> 1 −O(κ4(|G|1t)3 T ).
• SRPD gives E{F̃ e(T )}> 1 −O(κ6(|G|1t)5 T ). The same lower bound holds for ESDD,
EPCDD`>1 and EPSCPDm , although for the last two protocols averaging may be significantly
better.
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In general, based on the above estimates, we then expect randomized methods to
outperform their deterministic counterparts at long times. For T > (κ2

|G|21t)−1, we should
eventually have E{F̃NRDe (T )}> F̃PDDe (T ), while T > (κ2

|G|1t)−1 leads to E{F̃EMD/RPDe (T )}>
F̃SDDe (T ). However, in order to quantitatively compare SRPDwith CDD, EPCDD, SCPD and EPSCPD,
we need to specify the model in more detail. Notice that NRD is the only protocol showing no
dependence on the group size, which makes it a method of choice in cases where |G| is very
large.

4. Model system and control requirements

4.1. Model system

We consider a chain with N strongly coupled spin-1/2 particles (qubits) described by the
Heisenberg model, that is, the internal drift Hamiltonian in the physical frame reads

H0 = HZ + Hint =

N∑
i=1

ωiσ
(z)
i

2
+

N∑
i< j

∑
a=x,y,z

J (a)i j σ
(a)
i ⊗ σ

(a)
j , (11)

where σ (a) = σ (x,y,z) = X, Y, Z are the Pauli operators, ωi is the Zeeman splitting (Larmor
frequency) of spin i as determined by a static magnetic field in the z-direction, and J (a)i j is
the coupling parameter between spins i and j in the a-direction. Open boundary conditions are
assumed.

To illustrate the benefits of randomization, we concentrate on the simple case of
homogeneous NN couplings, for which very efficient DD schemes exist (see section 6). By
assuming J x

i j = J y
i j = J and J z

i j = α J , where α is the coupling anisotropy associated with the
Ising contribution, we thus have:

HNN =

N∑
i=1

ωi Z i

2
+

N−1∑
i=1

J [X i X i+1 + Yi Yi+1 +αZ i Z i+1] , (12)

This Hamiltonian is used to model quasi-one-dimensional magnetic compounds [72] and
Josephson-junction-arrays [73, 74]. It is also a fairly good approximation for couplings which
decay exponentially with the qubit distance—as arising, for instance, in semiconductor quantum
dot arrays [75], or which decay cubically—as in dipolarly coupled solid or liquid-crystal NMR
spin systems [1, 3, 76] and electrons floating on helium [77, 78].

Whenever qualitatively different, we shall compare the results associated with the above
HNN with those obtained from cubically decaying interactions as approximated by the following
Hamiltonian:

Hcub =

N∑
i=1

ωi Z i

2
+

N∑
i< j

J

[
X i X j + Yi Y j +αZ i Z j

( j − i)3

]
. (13)

Although neglected here, an additional dependence on the angle between the vector joining spin
pairs and the external magnetic field is present in principle in the secular dipole–dipole coupling
parameter of NMR spin systems [1, 3].
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4.2. Control requirements

In order to suppress the interactions in Hamiltonians (12) and (13), we assume the ability to
apply sequences of selective pulses, that is, control pulses that affect only some intended (subset
of) spins. This is to be contrasted with non-selective (or collective) pulse sequences, which affect
all qubits uniformly. A well-known example of the latter is the so-called WAHUHA sequence
developed by Waugh, Huber and Haeberlen [79] to suppress direct dipole–dipole couplings.
Randomized versions of this sequence, which may have implications for solid-state NMR QIP,
will be analyzed elsewhere.

Besides selectivity, another important feature of control pulses is the rotation angle they
affect. Let us assume that, as in typical spin resonance experiments, the system couples to an
oscillating control field linearly polarized in the x-direction according to

Hc(t)= 2�(t) cos[ωft +ϕ(t)]
N∑

i=1

X i

2
,

where the amplitude (power) 2�, the carrier frequency ωf and phase ϕ, as well as the interval
τ during which Hc(t) is on, and the separation 1t between successive pulses are under
experimental control. The field is rapidly switched on and off so that�(t)may be approximated
by a piecewise constant. In the rotating frame of the carrier, which rotates with frequency ωf,
the effective total Hamiltonian is given by

H R(t)= U R †(t)
(

H0 + Hc(t)−
ωf

2

N∑
i

Z i

)
U R(t), U R(t)= exp

(
− iωft

N∑
i

Z i

2

)
.

The interaction part of the Hamiltonian is invariant under this transformation, but, upon invoking
the rotating wave approximation [1], the linear terms and the control Hamiltonian become

H R
Z =

N∑
i=1

(ωi −ωf)
Z i

2
=

N∑
i=1

1i
Z i

2
, H R

c (t)=�(t)
N∑

i=1

[
X i

2
cosϕ(t)+

Yi

2
sinϕ(t)

]
.

From the above equations, we see that a given spin i is rotated when the control field is
applied on resonance with its frequency, ωf ≈ ωi (that is, the detuning 1i ≈ 0). The phase ϕ(t)
then determines the direction around which the rotation is realized in the rotating frame, and,
in the case of rectangular pulses, �τ characterizes the rotation angle. For instance, a pulse
with ωf = ω2, ϕ(t)= 0 and �τ = π flips spin 2 by 180◦ around the x-axis. Here, the systems
described by equations (12) and (13) will be subjected to sequences of π -pulses, while for
instance the abovementioned WAHUHA sequence involves π/2-pulses.

All the analyses developed in this paper are performed in the rotating frame. The spins in
the systems of interest are assumed to be addressable in frequency or by some other means,
thereby the possibility of using selective pulses. Additionally, the differences |ω j −ωi | are
assumed not to be much larger than the qubit–qubit coupling strength J , so that pulse sequences
involving rotations around more than a single axis are required. If indeed |ω j −ωi | � J , the
secular approximation leads to a truncated Hamiltonian where only terms in the z-direction
remain [3]. In this situation, DD may be effected by only using rotations around a single axis
perpendicular to z [4, 5]. In the case of nuclear spin-1/2 Hamiltonians, this means that we are
not interested in heteronuclear systems, since the Larmor frequencies of two different nuclear
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isotopes are separated by several megahertz, while the couplings are of the order of tens or
hundreds of hertz. Instead, our analysis has direct implications for homonuclear systems, where
the spins are differentiated by their chemical shifts δi , and |δ j − δi |& J . Chemical shifts emerge
from the presence of electrons, which generate different small magnetic fields at different sites
and cause variations of the net magnetic field experienced by the nuclei; the spin frequencies ω0

of the isotopes are then shifted as ωi = ω0 + δi .
In short, we shall focus our analysis on the effects of DD sequences with multiple axes of

rotation and selective pulses applied to the following rotating-frame Hamiltonians:

H R
NN ≈ Hint, (14)

H R
Z+NN ≈

∑
i

δi Z i

2
+ Hint, (15)

where in both cases Hint is given by the bilinear-NN-interaction terms described in equation (12),
and the two cases differ by the explicit inclusion of linear (chemical-shift) contributions.
A comparison between the results for H R

NN and those for the cubic-decay couplings of
equation (13), H R

cub, will also be provided.

5. Randomization over inefficient decoupling groups

We begin by assessing the advantages of randomization in the case of an inefficient DD
group, that is, a group whose size increases exponentially with the number of qubits. In
comparison with our previous works [46, 47], this section further demonstrates how pulse
parallelism represents a key factor in boosting protocol performance. In the logical-rotating
frame, the system we consider is described by H̃

R

NN (14). Since Gk = {1k, Zk, Xk, Yk} leads
to PDD sequences capable of refocusing σ (a)k−1 · σ

(a)
k and σ (a)k · σ

(a)
k+1, it is straightforward to see

that G = ⊗kGk , with k = 2, 4, . . . , 2m and m ∈ N, may be used to obtain PDD sequences which
decouple up to N qubits, where N = 2m or N = 2m + 1 [8, 14]. When N = 4 or 5, for instance,
a possible DD scheme may be visualized in terms of the following matrix [47],

M =

(
1 Z X Y Y X Z 1 1 Z X Y Y X Z 1
1 1 1 1 Z Z Z Z X X X X Y Y Y Y

)
,

where each row corresponds to an even qubit and each column, supplemented with the identity
operators associated to the odd qubits, leads to an element of the group, so that G = {g j},
j = 0, . . . , |G| − 1, with g j = 11 ⊗ [M(1, j+1)]2 ⊗ 13 ⊗ [M(2, j+1)]4 ⊗ 15. The proposed DD group
requires 4m π -pulses to close a single PDD cycle. Any path taken to traverse G leads to first-
order decoupling, however notice that a sequence arranged as in M has the property of avoiding
simultaneous rotations [14]. Contrary to that, a path as in

M ′
=

(
1 Z X Y 1 Z X Y 1 Z X Y 1 Z X Y
1 1 1 1 Z Z Z Z X X X X Y Y Y Y

)
,

for example, leads to simultaneous rotations at every t = 4n1t , n ∈ N. Among all PDD
sequences derived from the above group G, a very small subset consists of sequences involving
only single-qubit rotations; as |G| increases, most paths have in fact a large number of control
actions involving simultaneous rotations on several qubits at a time.
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Figure 1. PDD versus NRD based on a nested pulse sequence for H̃
R

NN (14) with
α = 1. Top panels: N = 6 and |G| = 43. Bottom panels: N = 8 and |G| = 44.
Left panels: ensemble-averaged entanglement fidelity at Tn = n|G|1t ; 1t =

0.8J −1/|G|. The numbers 1, 2, 3 and 4 stand for PDD1, PDD2, PDD3 and PDD4,
respectively. Free evolution: (black) oscillating solid line. Right panels: 〈〈F̃R

e 〉〉

at tn = n1t < Tc; Tc = 1.28 J −1. Average over 102 realizations.

In the NRD protocol, which is based on uniform randomization over G, possible control
operations range from the total absence of rotations (the identity operator) to collective rotations
on m qubits at once. In large systems, the fraction of pulses corresponding to extreme cases
is very small. Let Qr = 3r m!/[r !(m − r)!] denote the total number of random pulses leading
to r simultaneous rotations for a given number m of even qubits, where r = 0, 1, . . . ,m,
and

∑m
r=0 Qr = 4m . On the one hand, the percentage of pulses associated with a single qubit

rotation, r = 1, and with the maximum number of rotations, r = m, decreases with the size of
the system as 3m/4m and (3/4)m , respectively. On the other hand, the degree of parallelism
increases significantly with |G|. Given m, the largest Qr is obtained for r in the interval
[(3m − 1)/4, (3m + 3)/4] when m 6= 3 + 4n, whereas for m = 3 + 4n, both values, (3m − 1)/4
and (3m + 3)/4, lead to sets of equal size. This means that, for large m, the largest set of random
pulses involves rotations on roughly 75% of the even qubits.

Whenever a high degree of parallelism is afforded, more efficient DD schemes exist
where the total number of pulses needed to close a PDD cycle is significantly reduced (see
section 6). However, the interest in the inefficient averaging schemes analyzed here lies on
the possibility to contrast the effects of single rotations versus simultaneous rotations, and to
study DD under large control groups, while avoiding computationally intractable system sizes.
In figure 1, results on the decay of the ensemble-averaged entanglement fidelity in the rotating-
logical frame, 〈〈F̃R

e 〉〉, are shown. We consider N = 6 (N = 8) qubits in the top (bottom) panels,
which leads to a relatively large control cycle: 64 pulses (256 pulses). In each column, both top
and bottom panels have the same value of Tc. We compare NRD with different PDD sequences:
PDD1—based on the path given by M ; PDD2—based on the M ′ path; and PDD3, which corresponds
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to a particular path selected at random and repeated at every Tn = nT c. The beginning of the
PDD3 sequence used on the bottom panel is equal to the PDD3 from the top panel. Another
randomly selected path without this constraint is also considered in the case of N = 8 and is
referred to as PDD4.

When designing a PDD sequence, it is natural to start with straightforward structures such
as those given by M or M ′. However, they are not necessarily the best options. In the left panels,
fidelity is computed at every Tn = n|G|1t . By contrasting top and bottom panels, we verify that
the performance of NRD improves significantly as |G| increases, while PDD1 and PDD2 remain
essentially unchanged. This explains the crossing between these two curves and the randomized
protocol in the case of |G| = 256. The strong enhancement resulting from parallelism becomes
then evident and suggests that better deterministic sequences ought to exist. In this sense, the
selection of an efficient PDD sequence is a posteriori motivated by the study of a stochastic
scheme. In fact, PDD3 and PDD4 offer much better DD options. In situations where different
paths lead to such a broad range of performance and path optimization cannot be afforded, it
is more appropriate to use a protocol based on path randomization, such as RPD. This scheme
offers advantages also at long times, as it will be shown in section 6.

In the right panels of figure 1, we also compare PDD and NRD during intra-cycle times,
tn = n1t . This may be of interest in situations where constraints on the number of pulses or
control intervals make it unfeasible to close a complete cycle, for instance, when Tc becomes
prohibitively long. The decline in the PDD performance for tn < Tc followed by its recovering
as tn → Tc reflects the fact that deterministic sequences are designed to perform well at the
cycle completion. Notice that up to half of the cycle, NRD is (at least) as good as the selected
deterministic sequences.

We have then verified the beneficial contribution of parallelism in DD sequences, which
is increasingly pronounced as the group size grows. However, to ‘disentangle’ the two effects
and isolate the impact of |G| in deterministic versus randomized schemes, examining protocols
which have the same degree of parallelism is necessary in principle—e.g. those derived from
combinatorics [14]. The difficulty of such analysis, however, lies on the large system size
required, which makes numerical simulations practically unfeasible.

As a further remark, we call attention to the cycle time used in the figure: Tc ∼ J −1 is one
order of magnitude larger than the values determined by the convergence criterion κTc < 1. In
the case of N = 8, for instance, κ ∼ 20 J . This confirms that the criterion is overly pessimistic,
and values of Tc not necessarily complying with it may still lead to a substantial reduction of
unwanted interactions in situations of interest.

6. Randomization over efficient decoupling groups

We now focus on addressing the long-time behavior of the protocols described in section 3.
By long times we mean times where the analytical lower bounds are no longer reliable,
T & (κ21t)−1. Given the NN interactions under consideration, a very efficient DD group is
now able to be identified, for which PDD always involves only four selective multi-qubit pulses
irrespective of system size. Possible representations of the relevant control group for even N are:

GXY = {1, X1 X3 · · · X N−1, X1Y2 X3Y4 · · · X N−1YN , Y2Y4 · · · YN },

GX Z = {1, X1 X3 · · · X N−1, X1 Z2 X3 Z4 · · · X N−1 Z N , Z2 Z4 · · · Z N }, (16)

GZY = {1, Z1 Z3 · · · Z N−1, Z1Y2 Z3Y4 · · · Z N−1YN , Y2Y4 · · · YN },
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where, in each case, the rotation axis for odd qubits is perpendicular to the rotation axis for
even qubits. Notice that, if desired, the same averaging effects may be obtained with DD
groups which affect only even or only odd qubits. As an example, compare one of the pulse
sequences derived from GXY : P1 = P3 = X1Y2 X3Y4 · · · X N−1YN and P2 = P4 = Y2Y4 · · · YN ,
with a sequence acting only on odd qubits: P1 = P3 = Z1 Z3 · · · Z N−1 and P2 = P4 = Y1Y3 · · ·

YN−1, which is derived from Godd = {1, X1 X3 · · · X N−1, Y1Y3 · · · YN−1, Z1 Z3 · · · Z N−1, }. Both
lead to the same transformed Hamiltonians in each segment of free evolution, and therefore to
the same results.

The small size of the DD group simplifies the derivation of the leading terms in the AHT,
which, in turn, helps anticipating the long-time behavior of the protocols. In view of this,
the strategy of this section is to first obtain the dominant terms of the effective Hamiltonian
analytically, and then validate the analysis with numerical simulations. We start the analytical
part by examining the results for H̄ (0), H̄ (1) and H̄ (2) for the four deterministic protocols
presented in section 3.1, including the proposed SCPD, and conclude it by introducing a new
protocol which ensures decoupling up to (at least) the third order. In the numerical section, apart
from CDD and SRPD, all protocols shown in the figures are new. We also propose an algorithm
to search for efficient DD sequences, which, interestingly, is still outperformed by simpler
randomized methods. The section closes by addressing another aspect missing in previous
investigations, namely the effects of anisotropy and one-body terms for both deterministic and
randomized schemes.

6.1. Analytical results

For clarity, we show here the results obtained for a system described by H̃
R

NN, and leave the case

where the linear chemical-shift Hamiltonian is retained, H̃
R

Z+NN, to the appendix.

6.1.1. Lowest-order average Hamiltonian. At Tn = nT c = 4n1t , first-order DD is achieved
with any of the deterministic protocols, as discussed in section 3,

H̄ (0)
=

H1 + H2 + H3 + H4

4
= 0. (17)

At these times, for all randomized protocols except NRD, we also have, in the worst case,
Heff(4n1t)∝O(1t).

6.1.2. First-order contribution to the average Hamiltonian. Using equation (17), the first-
order correction to the average Hamiltonian, H̄ (1)

= −i(1t)2{[H4, H3] + [H4, H2] + [H4, H1] +
[H3, H2] + [H3, H1] + [H2, H1]}/(2Tc), simplifies to

H̄ (1)
= −

i(1t)2

2Tc

{
[H4, H3] + [H2, H1]

}
, (18)

whose result varies according to the group path selected. For each representation in
equation (16), the 4! available paths lead to the following six different results,

H̄ (1)
= ±J 2α1t

N−2∑
i=1

(Yi X i+1 Z i+2 + Z i X i+1Yi+2) , (19)
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H̄ (1)
= ±J 2α1t

N−2∑
i=1

(X i Yi+1 Z i+2 + Z i Yi+1 X i+2) , (20)

H̄ (1)
= ±J 21t

N−2∑
i=1

(X i Z i+1Yi+2 + Yi Z i+1 X i+2) . (21)

Note that, in the three-body contributions appearing in H̄ (1), the direction a of the middle
operator matches the direction of the interaction term σ

(a)
i ⊗ σ

(a)
i+1 that most frequently (three

times) changes sign within the interval [0, 41t]. Therefore, for an anisotropic model with α > 1,
paths that change the sign of the Ising term after every 1t , as in equation (21), are preferable to
those leading to equations (19) and (20), as intuitively expected.

In order to eliminate H̄ (1), we may employ symmetrized sequences such as SDD, PCDD2, or
PSCPD2. Specifically:

• The SDD cycle consists of eight intervals of free evolution characterized by the transformed
Hamiltonians in the following order, H1, H2, H3, H4, H4, H3, H2, H1 – or (1234 − 4321)
for short. The last four intervals correspond to a PDD sequence where 1 → 4, 2 → 3, 3 → 2
and 4 → 1, which inverts the sign of H̄ (1) in equation (18), leading to H̄ (1)(2nTc)= 0.
Equivalently, for SRPD, Heff(8n1t)∝O((1t)2).

• PCDD2 is characterized by 16 intervals of duration 1t , (1234 − 2143 − 3412 − 4321),
which is also symmetric, ensuring H̄ (1)(4nTc)= 0. Interestingly, half of this sequence also
leads to H̄ (1)(2nTc)= 0, since, according to equation (18), we can change the sign of H̄ (1)

by simply switching the order in the pairs: 12 → 21 and 34 → 43.

• PSCPD2 is given by the sequence (1234 − 4321 − 4123 − 3214 − 3412 − 2143 − 2341 −

1432), so that after every eight intervals 1t we have H̄ (1)(2nTc)= 0.

6.1.3. Second-order contribution to the average Hamiltonian. The three sequences given
above do not cancel H̄ (2). In fact, even higher levels of concatenation (or permutations) are still
incapable of eliminating the second-order term in the AHT, due to the sequence pre-determined
structure. The same 4 (8) different paths employed in PCDD2 (or PSCPD2) are the only ones
appearing also at ` > 2 (m > 2), and whether alone or in rearranged combinations with each
other, they cannot cancel H̄ (2). This is to be contrasted with the sequence introduced in the end
of this subsection, which incorporates a larger variety of group paths and does lead to H̄ (2)

= 0.
In order to better analyze the structure of H̄ (2), let us take advantage of equation (17) and write

H̄ (2)
= −

(1t)3

6Tc

{
[(2H1 + H2), [H1, H2]] + [(2H4 + H3), [H4, H3]]

}
. (22)

Because H̄ (k)
= 0 for k = 0, 1, to obtain H̄ (2) at Tn, we only need to sum H̄ (2) computed for

each of the n intervals [0, 41t]. It is straightforward to verify that H̄ (2) obtained with a PDD
sequence is identical to the one computed with its corresponding SDD, since the result for (1234)
is equal to that for (4321). Furthermore, the symmetry of equation (22) allows to simplify
the computation of H̄ (2) for PCDD2 and PSCPD2. For the first, we need to evaluate H̄ (2) only
for (1234) and (2143), whereas the latter requires the calculation of H̄ (2) for (1234), (4123),
(3412) and (2341). Notice that, up to third order in the AHT, the same results are then obtained
for this system with either PCDD2 or half of this sequence. Even though H̄ (2) is the dominant
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term for SDD, PCDD2 and PSCPD2, the last two sequences lead to a significant improvement.
This may be understood upon close inspection of a particular pulse sequence based on GXY ,
characterized by the path {1, X1Y2 · · · X N−1YN , X1 X3 · · · X N−1, Y2Y4 · · · YN }—which leads to
P1 = P3 = X1Y2 X3Y4 · · · X N−1YN and P2 = P4 = Y2Y4 . . . YN . The following exact results are
found:

SDD : H̄ (2)(2Tc)= −J 3(1t)22α
{

2

3

N−2∑
i=1

(X i X i+2 + Yi Yi+2 − 2Z i Z i+2)

−α

(
Y1Y2 + YN−1YN + 2

N−2∑
i=2

Yi Yi+1

)
+

1

3

N−3∑
i=1

[X i X i+2 (2Yi+1Yi+3 − Z i+1 Z i+3)

+Yi Yi+2 (2X i+1 X i+3 − Z i+1 Z i+3)− Z i Z i+2 (X i+1 X i+3 + Yi+1Yi+3)]

+2α
N−3∑
i=1

Z i X i+1 X i+2 Z i+3

}
,

PCDD2 : H̄ (2)(4Tc)= −J 3(1t)22α
{

2

3

N−2∑
i=1

(X i X i+2 + Yi Yi+2 − 2Z i Z i+2)

+
1

3

N−3∑
i=1

[X i X i+2 (2Yi+1Yi+3 − Z i+1 Z i+3)+ Yi Yi+2 (2X i+1 X i+3 − Z i+1 Z i+3)

−Z i Z i+2 (X i+1 X i+3 + Yi+1Yi+3)]
}
,

PSCPD2 : H̄ (2)(8Tc)= +J 3(1t)2α

{
2

3

N−2∑
i=1

(Z i Z i+2 + Yi Yi+2 − 2X i X i+2)

+
1

3

N−3∑
i=1

[Z i Z i+2 (2Yi+1Yi+3 − X i+1 X i+3)+ Yi Yi+2 (2Z i+1 Z i+3 − X i+1 X i+3)

−X i X i+2 (Yi+1Yi+3 + Z i+1 Z i+3)]
}
.

The results vary slightly for other control paths (see the appendix for a comparison between
two possibilities), but the basic conclusion remains unchanged: the number of bilinear and four-
body terms reduces when we switch from SDD to PCDD2 or PSCPD2. In particular, notice that,
contrary to SDD, the bilinear terms in PCDD2 and PSCPD2 involve only next-NN interactions.

In the case of H̃
R

Z+NN, where both linear and bilinear terms need to be taken into account,
the outcomes for H̄ (k), k = 0, 1 and 2, become strongly dependent not only upon the group path,
but also on the representation chosen, as demonstrated numerically in the next subsection and
analytically in the appendix.

6.1.4. Effect of group reducibility. It is insightful to contrast the results of CDD and SCPD
obtained here for the spin chain described by H̃

R

NN with the case of a single qubit subject to
a magnetic field of unknown direction, described by a Hamiltonian of the form H0 = EB · Eσ . In
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both problems, the DD group consists of four elements, however for H̃
R

NN the group action on
the system’s Hilbert space is reducible, whereas for the single qubit it is irreducible. In the latter
case, the decoupling group G = {1, X, Y, Z} is able to substantially decrease the power of 1t
in the average Hamiltonian for higher levels of concatenation and permutation. The table below
summarizes the order of H̄ for the first four levels4:

Isolated single qubit
Level PCDD` PSCPDm

1 O((1t)) O((1t)2)
2 O((1t)6) O((1t)5)
3 O((1t)23) O((1t)5)
4 O((1t)80) O((1t)5)

As the level of concatenation increases, a superpolynomial convergence is verified, establishing
CDD as the best performer for this system. For a single qubit coupled to an environment, the
results depend fairly sensitively on the pure bath Hamiltonian [11, 12], which is renormalized by
the control action [30] and whose interplay with the system-bath coupling terms is responsible
for determining the final convergence rate. Still, provided that the environment dynamics is
sufficiently slow, it has been verified that among the proposed protocols, CDD remains the
method of choice in the presence of generic single-qubit errors [29, 30, 81].

Having spelled out the advantages and limitations of CDD and SCPD, we now proceed to
describe possible strategies to further improve protocol performance:

• One option, which is especially relevant for reducible DD groups, as in equation (16),
consists in truncating CDD and SCPD at the first level beyond which no further improvement
is verified (`= 2 and m = 2 in the system under investigation), and then embedding the
resulting periodic sequence with random pulses derived from an irreducible group, such
as the Pauli group GP

= ⊗iGi . This way, the remaining terms in the effective Hamiltonian
may still be reduced.

• Another alternative is to take into account a larger number of group path realizations, and
combine them into a supercycle sequence which, besides H̄ (0) and H̄ (1), also cancels H̄ (2).
This may be achieved, for instance, with the sequence (1234 − 2143 − 2314 − 3241 −

3124 − 1342)—see description below. Once the appropriate sequence has been found, we
may again exploit randomization and embed the supercycle with random pulses.

• Clearly, we may seek sequences which eliminate additional higher order terms, although
there may be in general some disadvantages associated with this: (i) the sequences may
become much longer, and therefore harder to implement; (ii) searching for them may
become very demanding, especially when dealing with complex systems and larger DD
groups; (iii) in real settings, pulse errors need to be taken into account, which further
significantly increases the complexity of the search problem.

6.1.5. Supercycle sequence: H̄ (0)
= H̄ (1)

= H̄ (2)
= 0. In NMR, WAHUHA-based-supercycle

sequences which are capable of eliminating dipolar interactions up to third order have long been

4 The leading term results for an isolated qubit under the CDD protocol were first indicated to us by Leonid
Pryadko [80].
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devised [1]. A simple approach consists in combining three WAHUHA sequences cyclically
permuted [82]. In our case, however, permutations of the basic path (1234) are not sufficient, and
more group path realizations are required. Indeed, H̄ (k)

= 0, k = 0, 1 and 2, may be achieved,
for instance, with the sequence (1234 − 2143 − 2314 − 3241 − 3124 − 1342). Notice that each
eight intervals of this scheme correspond to a different half-PCDD2, which guarantees that
H̄ (k)(2Tc)= 0 for k = 0, 1. Furthermore, by using equation (22) and adding the results for H̄ (2)

obtained with each of the six PDD sequences contained in the supercycle, we arrive at the desired
result, H̄ (2)(6Tc)= 0. Thus, at every Tn = 6nTc, the first three terms in the average Hamiltonian
are simultaneously canceled—leading to better averaging than for CDD or SCPD obtained in a
cycle time even shorter than for PSCPD2.

In terms of pulses, this sequence, which we will refer to as H2 henceforth, translates into:

Uc(6Tc)= PA(PC PA PC)PB(PC PA PC)PC(PB PC PB)PA(PB PC PB)PB(PA PB PA)PC(PA PB PA),

where, for any path from equation (16) which starts with the identity, that is, {1, g1, g2, g3}, we
have PA = g1 = g3g†

2 , PB = g2g†
1 = g3 and PC = g3g†

1 = g2. Notice that the two axes of rotations
involved in the basic first-order-DD sequences change every 81t , and the direction appearing at
every 41t alternates according to the following rule: it starts with PC, is followed by PB, and is
finally PA, being then repeated. This is to be contrasted with PSCPD2, where PC does not appear,

(1234 − 4123 − 3412 − 2341)⇒ Uc(4Tc)= 1(PB PA PB)1(PA PB PA)1(PB PA PB)1(PA PB PA),

and with PCDD2, where C1 is fixed, PC is the only rotation appearing in between two C1s, and
only PA or PB appear between C2s:

C2 ⇒ Uc(4Tc)= 1(C1)PC(C1)1(C1)PC(C1),

C3 ⇒ Uc(16Tc)= PB(C2)PA(C2)PB(C2)PA(C2).

6.2. Numerical results

We validate the previous analytical analysis by studying a N = 8 qubit system described
by equation (12), subject to selective DD pulses derived from equation (16). Whenever
appreciably different, the results are also contrasted with those obtained for the cubically
decaying Hamiltonian given by equation (13). Notice that in the latter case, DD sequences have
been developed based on generalized Hadamard matrices [14], which may also be written in a
group form as presented in [46]. For N = 8 qubit, a possible representation is given by

G8 = {1, Z3 Z4Y5Y6 X7 X8, Z2Y3 X4 Z6Y7 X8, Z2 X3Y4Y5 X6 Z7,

Y2Y4 X5 Z6 X7 Z8, Y2 Z3 X4 Z5 X6Y8, X2Y3 Z4 X5 Z7Y8, X2 X3 Z5Y6Y7 Z8}.

6.2.1. Averaging of bilinear couplings: isotropic system. We first focus on the bilinear
interaction terms alone, as in equation (14), with the main goal of comparing deterministic and
randomized protocols at long evolution times. As an initial illustration of the rapid accumulation
of errors occurring in periodic deterministic schemes, in the left panel of figure 2, we assume a
PDD sequence and contrast the data acquired at intra-cycle times, tn = n1t/5, with data obtained
only at the completion of each cycle, Tn = 4n1t . The intra-cycle curve oscillates in time. At
short times, the peaks in performance coincide with the instants of cycle completion, but as time
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Figure 2. Long time behavior of DD sequences based on GZY (16) and applied
to H̃

R

NN (14) with N = 8, α = 1 and 1t = 0.1 J −1. Left panel: PDD sequence.
(Black) Curve: data acquired at intra-cycle times, tn = n1t/5; (red) crosses: data
at Tn = 4n1t . Right panel: deterministic versus randomized DD schemes. Data
acquired at Tn = 4n1t . Average fidelity over 102 control realizations.

evolves these two values become progressively detuned. This effect becomes more pronounced
at longer times and for larger values of 1t , indicating that best performance is not necessarily
achieved at Tn, and suggesting that repeating the same sequence after every cycle time may not
be the best strategy.

We next proceed with a quantitative comparison between protocols. While different ways
for effecting such a comparison are conceivable, a natural choice for contrasting cyclic and
acyclic schemes is to fix the interval between consecutive pulses, implying that higher levels
of concatenation and permutation may need longer times to be reached. Data is acquired after
every Tn = 4n1t , which for some of the protocols provides information about the performance
in between their defining inner sequences. In the case of H̃

R

NN and for times Tn > 30Tc, we find,
in increasing order of performance: NRD, PDD, SDD, EMD1, CDD, EMD2, RPD, SCPD, SRPD, EPCDD2

and EPSCPD2. Since, with the important exception of permutation-based protocols, these results
have been already partially presented in [46, 47], we limit ourselves to displaying in the right
panel of figure 2 the two best deterministic schemes and the three best randomized protocols,
briefly commenting on the others in what follows:

(i) NRD shows the poorest performance, consistent with the fact that the DD group is now very
small and all protocols involve simultaneous rotations.

(ii) PDD is unaffected by the representation or group path selected, whereas for H̃
R

cub, different
choices lead to a range of different results, which broadens as |G| increases. Such a
dependence also affects SDD and randomized protocols where the inner code is based on a
fixed pulse sequence, such as EMD.

(iii) EMD2 outperforms EMD1, which is not surprising given that the former involves an ensemble
of 4N random pulses, whereas the latter has only 4. A comparison between RPD and EMD2

is more subtle, due to the interplay between three factors: available repertoire of random
pulses, chances for symmetrization being achieved at Tn = 8n1t and sensitivity to path
selection. For the NN-isotropic system, RPD shows the best performance, while for H̃

R

cub,
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Figure 3. Deterministic versus randomized DD schemes based on GZY , (16)
applied to H̃

R

NN (14) with N = 8 and α = 1. Data acquired at Tn = 4n1t and
1t = 0.1 J −1. All panels contain the three curves corresponding to (bottom to
top) SRPD, EPCDD2 and EPSCPD2, but the dispersion is shown only for the protocol
indicated by the arrow. Average fidelity over 102 control realizations.

specific path choices of the inner code lead to superior performance of EMD2—see [46]. In
general situations where significant performance spread exist with respect to control path,
even though superior EMD2 sequences may exist, searching for them becomes demanding
when |G| is large, which justifies the use of RPD as a practical choice.

(iv) As seen in the right panel of figure 2, SRPD surpasses first CDD and then SCPD at sufficiently
long times. In contrast, for the system described by H̃

R

cub with same Tc value, CDD is
found to decay slower, being surpassed by SRPD only at T > 48Tc (see figure 2 in [46]),
whereas SCPD is outperformed by SRPD already at T > 4Tc. Still, the fact that such a simple
sequence as SRPD may outperform more elaborate deterministic methods such as CDD and
SCPD vividly exemplifies the advantages of randomization.

(v) The periodic sequences PCDD2 and PSCPD2 embedded with pulses randomly picked from
GP perform better than SRPD. In figure 3, we show the dispersions around the mean value
for each of the three random schemes: as expected, they all broaden at longer times. The
best protocol, EPSCPD2, exhibits also the narrowest dispersion. Therefore, by combining
randomization, symmetrization and permutation, a DD scheme which is still relatively
simple and yet very efficient may be created.

6.2.2. Genetic-inspired sequence optimization. Up to this point, the methodology we have
used to develop better DD protocols has consisted of deriving a first-order DD sequence from
AHT (PDD), and then improving it by exploiting deterministic strategies and randomization. We
now address an alternative numerical approach to design high-level protocols. When creating
algorithms to search for efficient protocols, the freedom in terms of types of controls (axis and
angle of rotation), number of qubits affected at each step, and values of intervals between pulses
is enormous, and taking all of these factors into account would make the analysis intractable.
Thus, in line with what we have done so far, we restrict to ideal selective pulses drawn from the
sets in equation (16), and separated by a fixed interval 1t .

The algorithm we propose may be described as follows: at every Tn, we search among the
|G|! = 24 different group paths the one which leads to the largest value of 〈〈F̃R

e 〉〉 at Tn+1; the best
sequence from Tn to Tn+1 is then stored, and the same search procedure is iterated for the next
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intervals, so that the sequence is built up piece by piece. The resulting sequence is named ALGOR
and is shown in the right panel of figure 2. In a sense, this method shares some similarities with
popularly employed genetic algorithms [83, 84]. Here, the entire domain depends on the final
time Tn, consisting of (|G|!)n different individuals. However, instead of randomly generating an
initial population from this entire range of possible solutions, our initialization is based only
on the set of |G|! paths for the interval [0, |G|1t]. For each new interval [Tn, Tn+1] and with
reference to the same population of |G|! paths, a new generation, bred from the best sequence
for [Tn−1, Tn], is selected. The fitness function corresponds to 〈〈F̃R

e (Tn+1)〉〉: it strongly depends
on time as well as on the previously selected ancestors.

Below, we show the structure of the first 72 intervals of free evolution for the optimized
pulse sequence obtained with the parameters of figure 2:

(1234 − 2143 − 2314 − 3241 − 3124 − 1342),

(4312 − 4213 − 1423 − 4132 − 2431 − 3421), (23)

(4231 − 2413 − 4123 − 4321 − 3412 − 1432).

Observe that the first line corresponds to the scheme H2 already discussed in section 6.1.5. Each
of the two additional lines in equation (23) also individually leads to the cancellation of H̄ (0),
H̄ (1) and H̄ (2). The third-order decoupling is one reason for the significant improvement of
this sequence when compared with the others in figure 2. Another very important, and related,
contributing factor is the continual variation of the control path at every Tn = 4n1t . Notice that
up to T = 721t , 18 different control paths are used. This is to be contrasted with CDD (SCPD),
where, for any level of concatenation (permutation), only 4 (8) different paths can be employed,
variations being associated only with the order they are arranged.

Frequent path alteration is at the heart of methods employing path randomization, which
makes it worth to further scrutinize the behavior of simpler sequences, whereby we use
randomization on top of sequences removing H̄ (0)(24n1t), H̄ (1)(24n1t) and H̄ (2)(24n1t).
Another motivation for this analysis is the fact that the algorithm proposed above clearly
becomes unfeasible for large DD groups. In such cases, turning to simpler alternatives becomes
a necessity. Let us then select the first line in equation (23) and create three new protocols:
(a) a deterministic scheme where the 24 free intervals are periodically repeated (PH2); (b) a
randomized scheme (RH2), where the path for the interval [24n1t, 24n1t + 41t] is picked
at random and the subsequent interval [24n1t + 41t, 24n1t + 241t] is rearranged so that at
24(n + 1)1t , the three terms, H̄ (0), H̄ (1) and H̄ (2) cancel; (c) another randomized scheme, named
EH2, where the first line is used as an inner code to be embedded with random pulses from GP.
These protocols are compared in figure 4 with ALGOR and EPSCPD2.

Notice that the inner code of the two new randomized sequences is shorter than that for
EPSCPD2, yet they perform significantly better, EPSCPD2 being closer in performance to the
deterministic scheme PH2. Interestingly, at very long times, RH2 and EH2 outperform even
the ALGOR sequence. It is therefore clear that the algorithm used here cannot identify the
optimal scheme for very long times, the reason being the extreme sensitivity of pulse sequence
performance to the final time. Take, for example, two instants of time TA and TB, with TB > TA.
The sequence that leads to the best result at TA is not necessarily the beginning of the one giving
the best result at TB. The algorithm employed looks for the best future pulses to be added to the
paths that were already selected and which cannot be further altered. Randomized design, on
the other hand, gives access to realizations that may be worse than the ALGOR scheme at TA, yet
will contribute to better realizations at TB.
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Figure 4. DD schemes that guarantee H̄ (0)
= H̄ (1)

= H̄ (2)
= 0 at 24n1t and

EPSCPD2. System described by H̃
R

NN with N = 8 and α = 1. Data acquired
at Tn = 4n1t and 1t = 0.1 J −1. Notation: ALGOR, sequence obtained via
the numerical algorithm explained in the text; PH2, periodic sequence; EH2,
embedded sequence with random pulses from GP and RH2, random path. Average
fidelity over 102 control realizations.

6.2.3. Linear terms and anisotropy. Attention so far has focused on averaging out the bilinear
terms of an isotropic system. As a next step, we consider H̃

R

Z+NN, by taking into account one-
body terms and the effects of anisotropy. As a main feature, deterministic schemes (and by
extension randomized schemes employing fixed inner codes) turn out to be strongly dependent
upon the selected representation and control path. In such conditions, protocols based on path
randomization become more advantageous for two main reasons: Firstly, even though they need
not lead to the best results, they ensure robust behavior against path variations; secondly, it may
be too demanding to find the best control path when dealing with large |G|. We shall compare
two deterministic protocols, CDD and SCPD, with SRPD in the presence of anisotropy and linear
Zeeman terms characterized by δi . The effective Hamiltonian for these three schemes is of
O((1t)2), and exact analytical results for the second-order contribution H̄ (2) of the deterministic
protocols are provided in the appendix.

Let us start by investigating the additional effects of the one-body terms in H̃
R

Z+NN. The
selective pulses are now drawn from GXY in equation (16), since GX Z and GZY do not cancel
linear terms. Two paths are examined:

Path 1: {1, X1Y2 . . . X N−1YN , X1 X3 . . . X N−1, Y2Y4 . . . YN },

Path 2: {1, X1 X3 . . . X N−1, X1Y2 . . . X N−1YN , Y2Y4 . . . YN }.
(24)

For δi > Jα, based on equations (20), (A.2), (A.3) and (A.4), we expect Path 1 to be the best
choice for PDD, SDD and CDD, whereas Path 2 is more suitable for SCPD. This is demonstrated
numerically for CDD and SCPD in the left panel of figure 5, where an isotropic system, α = 1, is
considered. Once again, the randomized scheme, SRPD, surpasses the deterministic protocols at
sufficiently long times. In the case where δi . Jα, the competition between α and δi complicates
the selection of the best control path, which encourages the use of randomized-path schemes.

In order to isolate the effects of the anisotropy, we discard the one-body terms and return
to H̃

R

NN, but this time with α 6= 1. As indicated by equations (20), (21), (A.3) and (A.4), PDD
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Figure 5. Deterministic versus randomized DD schemes based on GXY (16)
applied to H̃

R

NN and H̃
R

Z+NN, N = 8. Data is acquired at every Tn = 4n1t , 1t =

0.05 J −1. For deterministic schemes: solid line, Path 1; dashed line, Path 2. SRPD:
dot-dashed line. Left panel: H̃

R

Z+NN; α = 1. Qubits distinguished by chemical

shift: δi = 10 J , i-odd; δi = 0; i-even. Right panel: H̃
R

NN and α = 5. Average
fidelity over 102 control realizations. Notice that the value of1t considered here
is half the one used in figures 2 and 3, reflecting the fact that, in the presence of
δi and for α > 1, fidelity decays faster.

and SDD are expected to perform better for Path 2, which is somehow intuitive, since this is the
path that changes the sign of the Ising term more frequently. Predictions of this sort become
less trivial when dealing with CDD and SCPD, since H̄ (2) for the interactions alone is very similar
for both paths. Therefore, the identification of the best path for these protocols requires either
precise knowledge about the system and tedious computations of higher order terms in the
average Hamiltonian, or a numerical search over an ensemble of realizations. Both options may
be avoided if instead we employ a randomized protocols such as SRPD. In the right panel of
figure 5, we compare the paths from equation (24) for an anisotropic system controlled via CDD,
SCPD and SRPD. In stark contrast to PDD and SDD, CDD and SCPD perform better for Path 1. Notice
also that CDD appears to be more robust than SCPD against path variations; still, as before, they
are both surpassed by SRPD at long times.

Overall, the following conclusions may be drawn: various analytical and numerical
strategies exist or may be devised to improve the performance of deterministic protocols.
However, DD can always benefit from randomization in terms of: pulse sequence simplification,
robustness to path variations, and slower accumulation of residual averaging errors.

7. Pulse imperfections

Throughout the analysis developed so far as well as in previous works [44, 46, 47], we have
assumed ideal control resources, implying, in particular, the ability to effect instantaneous
perfect pulses. In practice, attainable control operations are far from ideal, a variety
of systematic and random imperfections contributing to deteriorate protocol performance.
Systematic errors, in particular, may be especially harmful at long times, since their effects tend
to be cumulative. Depending on implementation detail, different control non-idealities may be
relevant [1], including: finite-width effects; deviations from the intended rotation angles, which
may in turn be common to all pulses or different for different sets of controls; phase errors,
arising from the fact that the phases of different pulses are not necessarily in quadrature; phase

New Journal of Physics 10 (2008) 083009 (http://www.njp.org/)

http://www.njp.org/


28

0.996 1

0.9808

0.9810

0.9812

0.996 1
0.9794

0.9795

0.9796

0.9797

0 10 20 30
0

0.5

1.0

0 10 20 30 0 10 20 30

PDD
CDD

SCPD

SRPD

SRPD

PDD PDD

SCPDCDD

PDD PDD

CDD SCPD
SRPD

β/πβ/π

F̃
R e

JTnJTnJTn

F̃
R e

Figure 6. Ideal versus finite-width pulses for deterministic and randomized DD
schemes derived from GZY (16). System described by H̃

R

NN with N = 8, α = 1
and 1t = 0.1 J −1. Top panels: 〈〈F̃R

e (Tc)〉〉 versus β/π . Bottom panels: decay
in time for 〈〈F̃R

e 〉〉 for β = π . Left panel: τ = 0. Middle panels: τ = 0.005 J −1.
Right panels: τ = 0.01 J −1. Average fidelity over 102 control realizations.

transients associated with control switching. By way of illustration, we focus on analyzing
how DD performance is affected by pulses of finite duration and flip-angle errors. The three
protocols with effective Hamiltonian of O((1t)2), CDD, SCPD and SRPD, are selected for such
investigation, some discussion about PDD also being presented. The case of a system described
by H̃

R

NN is explicitly considered, with DD pulses being drawn from GZY .

7.1. Finite pulse widths

In realistic control settings, the power � is not infinite nor is the pulse duration τ equal to
zero. As a first approximation, pulses may be assumed to have a rectangular profile (for shaped
pulses see e.g. [85]–[88]), and phase transients associated with the instants they are turned on
and off [1] may be disregarded, so that the desired rotation angle is simply determined by the
product β =�τ .

Given finite pulses, first-order DD is no longer achieved. Instead, after the completion of
the first PDD cycle, we find

H̄ (0)
= −

N−1∑
i=1

(Yi X i+1 + X i Z i+1)
τ (1 − cosβ)

2β1t
β=π
→ −

N−1∑
i=1

(Yi X i+1 + X i Z i+1)
τ

π1t
, (25)

which cancels only in the limit τ/1t → 0. This is to be contrasted with the WAHUHA sequence,
where first-order DD may still be achieved by properly adjusting the rotation angle according
to τ/1t [1]. In our case, depending on such a ratio, small deviations from β = π lead simply
to hardly perceptible improvements on the results for F̃R

e (Tc), as shown in the top panels of
figure 6. To justify this improvement, higher order terms in the average Hamiltonian are needed,
since it is most probably caused by the interplay between these terms and H̄ (0).
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Since, for the values of τ/1t considered here, the improvement in fidelity obtained by
varying β is negligible, in the bottom panels of figure 6 we simply fix β = π and compare PDD,
CDD, SCPD and SRPD. Similarly to figure 2, SRPD outperforms the deterministic schemes at long
times. However, SRPD deteriorates faster with finite pulses than the deterministic schemes. As a
result, for very large errors, of the order of τ/1t > 10%, the gain achieved with randomization
is offset by the errors and the performance of SRPD becomes comparable to that of SCPD.

7.2. Flip angle errors

Flip angle errors may be caused by power misadjustment in the pulse generator, variations of the
transmitter power output, or radio-frequency inhomogeneities [1]. Here, we focus on systematic
flip angle errors which are common to all pulses. This corresponds to a small over-rotation ε of
the intended π -pulses, which may be described by

exp[−iπ(1 + ε)σ (a)i /2] = −1sin(επ/2)− iσ (a)i cos(επ/2). (26)

In the top panel of figure 7, we consider an over-rotation of 1% (which is relatively large with
respect to what is achievable in typical resonance experiments [1, 40]), and compare SCPD, CDD
and SRPD. As in the case of ideal pulses, CDD is outperformed by SRPD, however the crossing
between SCPD and SRPD is no longer verified. This may be better understood by observing the
middle panels, where we show the difference D(ε) between the fidelity obtained with ideal and
with faulty DD pulses, 〈〈F̃R

e 〉〉ε=0 and 〈〈F̃R
e 〉〉ε , respectively. Interestingly, errors may contribute
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favorably to the performance of deterministic schemes, as indicated by the negative values of
D(ε). When ε = 0.01, the improvement for CDD is modest and occurs at intermediate times,
while SCPD shows a significant increase in fidelity at long times. Contrary to that, flip-angle
errors have always a detrimental impact on randomized schemes. Therefore, the accumulation of
high-order terms of the average Hamiltonian in SCPD is counterbalanced with the positive effects
caused by errors ε ∼ 0.01, while the advantages of randomization in SRPD cannot compensate
for the sensitivity to pulse imperfections, resulting in the worse performance of the latter.

As a further illustration of the effect of flip-angle errors in deterministic schemes, we show
in the bottom panel the effects of ε on PDD. At very short times, ε enhances the fidelity decay,
while this situation is reversed at longer times. Contrary to SCPD and CDD, where ε > 0.01 mostly
worsens protocol performance, a consistent improvement of PDD at longer times is observed for
errors up to ε ∼ 0.03.

In short, even though deterministic protocols appear to be more protected against finite
width and flip-angle errors than randomized schemes, in the case of relatively small errors the
advantages of randomization at long times are still dominant. From this perspective, a promising
next step may arise from combining randomized with bounded-strength Eulerian design [10],
which is explicitly intended to compensate unwanted evolution during pulses and offer enhanced
fault-tolerance.

8. Conclusions

8.1. Summary

We have developed a quantitative comparison between deterministic and randomized DD
protocols in closed systems described by a time-independent Hamiltonian, confirming the
advantages of randomization at long evolution times and the efficiency of control protocols
which combine multiple decoupling strategies—such as randomization, symmetrization,
concatenation and cyclic permutations. We have also argued how the search for better
deterministic sequences in a large set of possibilities may be shortcut by using randomization
to develop simple, yet very efficient protocols. While the main emphasis has been on removing
bilinear interactions in a spin-1/2-particle-system with isotropic NN couplings, a number of
results in the presence of anisotropic couplings and one-body terms have also been established.
Furthermore, a comparison between DD results for NN and for long-range cubically decaying
interactions has been included. Two types of DD groups have been considered: an inefficient
group whose size increases exponentially with the system size, and may be easily extended
to systems with long range couplings; and a very efficient group, which leads to only four
simultaneous pulses and is specifically designed for systems with NN interactions.

In the case of inefficient averaging, we have shown that different paths to traverse the DD
group lead to a broad range of results, where PDD sequences involving collective rotations tend to
perform better than those consisting mainly of single rotations. For large groups, the selection of
the best deterministic protocols becomes very demanding, which favors protocols that average
over various possibilities, such as NRD. A further step consists in applying RPD, which already
pre-selects the most efficient pulse sequences to be included in the average. Additionally, we
have shown that in situations where the DD group is so large that a single cycle can be hardly
completed, the performance of NRD is similar to the best PDD performance.
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The small number of pulses involved in efficient DD schemes has allowed for a thorough
analytical study. This has offered insight into elucidating why different paths and group
representations do not affect DD performance for isotropic NN couplings, and also enabled us
to partially predict the best control choices in the presence of anisotropy and one-body terms—
as independently validated via simulation. Most importantly, the analytical results have shed
light on the reasons for the limited performance of concatenated protocols (and protocols based
on cyclic permutations) in the class of systems under consideration, and paved the way to the
development of a better control sequence able to decouple interaction up to third order, at least.
The key idea has been to access a larger set of path realizations than those available to CDD and
SCPD, and yet rearrange them such that the structure of half-PCDD2 is kept.

Numerical simulations have served a twofold purpose throughout: to confirm and
extend the analytical predictions; and to identify the optimal randomization strategy. While
randomization is unquestionably advantageous at long times, whether it is better to embed a
deterministic sequence with random pulses or to apply path randomization strongly depends on
the system at hand. If the inner code varies significantly with the path, and the search for the
best option is demanding, path randomization always proves more adequate.

Along with the numerical analysis, we have also proposed an algorithm to search for new
DD schemes. This has resulted in an extremely efficient pulse sequence based on frequent path
alteration. Interestingly, however, this sequence turned out to be outperformed by a very simple
scheme which combined the initial pulses from the algorithm sequence with randomization. The
main take-away message is that even though an optimal deterministic sequence may always exist
for a particular system at a specific final time, identifying it may be beyond reach, in which case
resorting to simpler, yet efficient randomized sequences becomes a practical method of choice.

Lastly, the effects of two control non-idealities—finite width pulses and flip-angle errors—
have been quantified. Deterministic protocols appear to be better protected against such
imperfections, although the relative gain due to randomization still dominates if the errors
are relatively small. A complete analysis of fault-tolerance requires, however, consideration
of additional compensation mechanisms along with randomization, which we plan to address
elsewhere.

8.2. Outlook

The selection of an adequate DD protocol ultimately depends on details about the system
and the control objective to be achieved. A sequence like PCDD2, for example, is excellent to
decouple a single qubit from its surrounding bath [29, 30, 81], but performs poorly at freezing
evolution in a spin chain with NN interactions. Similarly, the WAHUHA sequence combined
with cyclic permutations lead to third-order DD of the dipolar Hamiltonian [1], whereas the
periodic permutation-based PSCPD2 protocol is unable to cancel H̄ (2) in HNN. When the control
pulses aim at complete refocusing, the desired storage time is a decisive factor in the choice of a
protocol. By comparing the evolution times in figures 2 and 4, for example, one sees that SRPD
is a good enough method in the first situation, although not worth consideration in the latter.
Another important consideration stems from the desired control goal: the removal of unwanted
evolution, independent of the choice of initial state, as addressed here by analyzing the decay of
entanglement fidelity; or the preservation of a specific, known initial state. The latter scenario
may allow for the development of dedicated pulse sequences ensuring yet better performance—
as exemplified by long-time coherence saturation effects observed in both NMR spin-locking
experiments [1] and in quantum information storage [29, 30, 81].
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Throughout this work, the time interval between consecutive pulses in PDD has a fixed
value 1t , while for other protocols actual rotations may be separated by some integer multiples
of 1t . If this constraint is relaxed, so that consecutive rotations may be arbitrarily spaced,
substantial freedom is added in principle to DD design. In this sense, the existence of optimized
sequences for specific control settings, as in [17], points to the potential of unevenly-spaced
sequences for higher order DD. Together with bounded-strength Eulerian design, the analysis
and combination of multiple control time scales and different angles of rotation is clearly an
issue which deserves additional exploration in the context of randomization, along with the
identification of a QIP platform which may be suitable to experimentally test some of the
benefits predicted for randomized coherent control.
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Appendix. Dominant terms in the average Hamiltonian

Here, we consider the general Hamiltonian with NN interactions, H̃
R

Z+NN (15), where both
anisotropy (α 6= 1) as well as one-body terms may be present, and provide explicit results for
the first three contributions to the average Hamiltonian in the case of deterministic protocols.

A.1. Lowest-order average Hamiltonian: H̄ (0)

Representations GX Z and GZY (16), which involve group elements in the z-direction and also
representations affecting only half of the qubits cannot cancel all one-body terms. If complete
refocusing of the Hamiltonian is the goal, GXY is the representation to be used, for it guarantees
H̄ (0)(Tc)= 0. Let us consider two particular pulse sequences characterized by the following
paths:

Path 1: {1, X1Y2 . . . X N−1YN , X1 X3 . . . X N−1, Y2Y4 . . . YN },

Path 2: {1, X1 X3 . . . X N−1, X1Y2 . . . X N−1YN , Y2Y4 . . . YN }.
(A.1)

A.2. First-order contribution to the average Hamiltonian: H̄ (1)

For PDD sequences from GXY that change the sign of the Ising interaction after every 1t , such
as Path 2, we find

H̄ (1)(Tc)= ∓ J1t

[∑
i-odd

(δi + δi+1)

2
Yi X i+1 +

∑
i-even

(δi + δi+1)

2
X i Yi+1

]

± J 21t
N−2∑
i=1

(X i Z i+1Yi+2 + Yi Z i+1 X i+2) , (A.2)
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while for Path 1, equation (20) still holds. The interplay between anisotropy and qubit
frequencies becomes now a determining factor in the selection of an appropriate group path.

A.3. Second-order contribution to the average Hamiltonian: H̄ (2)

We compute H̄ (2) for the two pulse sequences of GXY in equation (A.1). The following results
are found for SDD, PCDD2 and PSCPD2. Notice that for reasons explained in section 6.1, H̄ (2)(2Tc)

for SDD equals H̄ (2)(Tc) for PDD.

Path 1:

SDD : H̄ (2)
= −

A

3
La − 2J A

{
Dz + Qz −α

(
Y1Y2 + YN−1YN + 2

N−2∑
i=2

Yi Yi+1

)

+2α
N−3∑
i=1

Z i X i+1 X i+2 Z i+3

}

PCDD2 : H̄ (2)
= −

A

3
La − 2J A(Dz + Qz),

PSCPD2 : H̄ (2)
=

A

6
Lb + J A(Dx + Qx). (A.3)

Path 2:

SDD : H̄ (2)
= (1t)2

{
(δ1 + δ2)Z1 +

∑
i-odd

(δi−1 + 2δi + δi+1)Z i + (δN−1 + δN )Z N-odd,

}

+
J

2
(1t)2

[∑
i-odd

(δi + δi+1)δi+1Yi Yi+1 +
∑

i-even

(δi + δi+1)δi Yi Yi+1

]

−
A

3

{
Lb +

3

α

∑
i-even

[−2(δi + δi+1 + δi+2)X i Z i+1 X i+2 + (δi + δi+2)Yi Z i+1Yi+2]

}

−2J A

{
Dx + Qx −

1

α

(
Y1Y2 + YN−1YN + 2

N−2∑
i=2

Yi Yi+1

)
+

2

α

N−3∑
i=1

X i Z i+1 Z i+2 X i+3

}
,

PCDD2 : H̄ (2)
= −

A

3
Lb − 2J A(Dx + Qx),

PSCPD2 : H̄ (2)
=

A

6
La + J A(Dz + Qz), (A.4)

where the following quantities have been introduced:

A = J 2(1t)2α

La =

∑
i-odd

[(δi − δi+1)Yi Yi+1 Z i+2 − (δi+1 − δi+2)Z i Yi+1Yi+2]

+
∑

i-even

[(δi − δi+1)X i X i+1 Z i+2 − (δi+1 − δi+2)Z i X i+1 X i+2] ,
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Lb = −

∑
i-odd

[(2δi + δi+1)Yi Yi+1 Z i+2 + (δi+1 + 2δi+2)Z i Yi+1Yi+2]

+
∑

i-even

[(δi + 2δi+1)X i X i+1 Z i+2 + (2δi+1 + δi+2)Z i X i+1 X i+2] ,

Dz =
2

3

N−2∑
i=1

(X i X i+2 + Yi Yi+2 − 2Z i Z i+2),

Dx =
2

3

N−2∑
i=1

(Yi Yi+2 + Z i Z i+2 − 2X i X i+2),

Qz =
1

3

N−3∑
i=1

[X i X i+2 (2Yi+1Yi+3 − Z i+1 Z i+3)+ Yi Yi+2 (2X i+1 X i+3 − Z i+1 Z i+3)

−Z i Z i+2 (X i+1 X i+3 + Yi+1Yi+3)],

Qx =
1

3

N−3∑
i=1

[Yi Yi+2 (2Z i+1 Z i+3 − X i+1 X i+3)+ Z i Z i+2 (2Yi+1Yi+3 − X i+1 X i+3)

−X i X i+2 (Yi+1Yi+3 + Z i+1 Z i+3)].
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Prosen T and Žnidarič M 2002 J. Phys. A: Math. Gen. 35 1455
[51] Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and

Wineland D J 2008 Phys. Rev. A 77 012307
[52] Fern F 1958 Bull. Classe Sci. Acad. R. Bel. 44 818
[53] Klarsfeld S and Oteo J A 1989 J. Phys. A: Math. Gen. 22 2687
[54] Blanes S, Casas F, Oteo J A and Ros J 1998 J. Phys. A: Math. Gen. 31 259
[55] Madhu P K and Kurur N D 2006 Chem. Phys. Lett. 418 235
[56] Klarsfeld S and Oteo J A 1989 Phys. Rev. A 39 3270
[57] Maricq M M 1982 Phys. Rev. B 25 6622
[58] Feld’man E B 1984 Phys. Lett. A 104 479
[59] Maricq M M 1987 J. Chem. Phys. 86 5647
[60] Salzman W R 1987 Phys. Rev. A 36 5074

New Journal of Physics 10 (2008) 083009 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.85.2272
http://dx.doi.org/10.1103/PhysRevA.62.053405
http://dx.doi.org/10.1103/PhysRevA.69.030302
http://dx.doi.org/10.1103/PhysRevA.71.020302
http://dx.doi.org/10.1103/PhysRevA.70.040101
http://dx.doi.org/10.1103/PhysRevLett.92.117905
http://dx.doi.org/10.1007/s11128-004-2223-0
http://dx.doi.org/10.1103/PhysRevB.72.045330
http://dx.doi.org/10.1103/PhysRevLett.98.077602
http://dx.doi.org/10.1103/PhysRevLett.98.077601
http://dx.doi.org/10.1103/PhysRevB.76.241303
http://dx.doi.org/10.1103/PhysRevB.75.201302
http://dx.doi.org/10.1103/PhysRevB.77.125336
http://dx.doi.org/10.1103/PhysRevB.77.125336
http://arxiv.org/abs/0803.1794
http://dx.doi.org/10.1103/PhysRevLett.83.4888
http://arxiv.org/abs/0803.4320
http://arxiv.org/abs/quant-ph/0010001
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
http://dx.doi.org/10.1023/A:1019623208633
http://dx.doi.org/10.1103/PhysRevLett.88.047901
http://dx.doi.org/10.1126/science.1081045
http://dx.doi.org/10.1103/PhysRevLett.95.030506
http://dx.doi.org/10.1103/PhysRevA.71.012332
http://dx.doi.org/10.1103/PhysRevA.71.012332
http://dx.doi.org/10.1103/PhysRevLett.94.060502
http://dx.doi.org/10.1103/PhysRevLett.95.250501
http://dx.doi.org/10.1103/PhysRevA.72.062303
http://dx.doi.org/10.1103/PhysRevA.73.062302
http://dx.doi.org/10.1103/PhysRevLett.97.150501
http://dx.doi.org/10.1080/09500340600955633
http://arxiv.org/abs/0712.1480
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1088/0305-4470/34/47/103
http://dx.doi.org/10.1088/0305-4470/35/6/309
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1088/0305-4470/22/14/019
http://dx.doi.org/10.1088/0305-4470/31/1/023
http://dx.doi.org/10.1016/j.cplett.2005.10.134
http://dx.doi.org/10.1103/PhysRevA.39.3270
http://dx.doi.org/10.1103/PhysRevB.25.6622
http://dx.doi.org/10.1016/0375-9601(84)90027-6
http://dx.doi.org/10.1063/1.452541
http://dx.doi.org/10.1103/PhysRevA.36.5074
http://www.njp.org/


36

[61] Fernandéz F M 1990 Phys. Rev. A 41 2311
[62] Casas F 2007 J. Phys. A: Math. Theor. 40 15001
[63] Iserles A and Norsett S P 1999 Phil. Trans. R. Soc. A 357 983
[64] Iserles A 2002 Not. AMS 49 430
[65] Schumacher B 1996 Phys. Rev. A 54 2614
[66] Fortunato E M, Viola L, Hodges J, Teklemariam G and Cory D G 2002 New J. Phys. 4 5
[67] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888
[68] Nielsen M A 2002 Phys. Lett. A 303 249
[69] Levitt M H and Freeman R 1981 J. Magn. Reson. 43 502
[70] Levitt M H, Freeman R and Frenkiel T 1982 J. Magn. Reson. 47 328

Levitt M H, Freeman R and Frenkiel T 1982 J. Magn. Reson. 50 157
[71] Shaka A J and Keeler J 1987 Prog. Nucl. Magn. Reson. Spectrosc. 19 47
[72] Salunke S S, Ahsan M A H, Nath R, Mahajan A and Dasgupta I 2007 Phys. Rev. B 76 085104
[73] Glazman L I and Larkin A I 1997 Phys. Rev. Lett. 79 3736
[74] Giuliano D and Sodano P 2005 Nucl. Phys. B 711 480
[75] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[76] Baugh J, Moussa O, Ryan C A, Nayak A and Laflamme R 2006 Phys. Rev. A 73 022305
[77] Platzman P M and Dykman M I 2000 Science 284 1967
[78] Dykman M and Platzman P M 2000 Fortschr. Phys. 48 1095
[79] Waugh J S, Huber L M and Haeberlen U 1968 Phys. Rev. Lett. 20 180
[80] Pryadko L 2005 private communication
[81] Zhang W, Dobrovitski V V, Santos L F, Viola L and Harmon B N 2007 J. Mod. Opt. 54 2629
[82] Mansfield P 1971 J. Phys. C: Solid State Phys. 4 1444
[83] Mitchell M 1996 An Introduction to Genetic Algorithms (Cambridge, MA: MIT Press)
[84] Wu Z, Huver S D, Uskov D, Lee H and Dowling J P 2007 Preprint 0708.1498
[85] Slichter C P 1992 Principles of Magnetic Resonance (Berlin: Springer)
[86] Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037
[87] Sengupta P and Pryadko L P 2005 Phys. Rev. Lett. 95 037202
[88] Pasini S, Fischer T, Karbach P and Uhrig G S 2008 Phys. Rev. A 77 032315

New Journal of Physics 10 (2008) 083009 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.41.2311
http://dx.doi.org/10.1088/1751-8113/40/50/006
http://dx.doi.org/10.1098/rsta.1999.0362
http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1088/1367-2630/4/1/305
http://dx.doi.org/10.1103/PhysRevA.60.1888
http://dx.doi.org/10.1016/S0375-9601(02)01272-0
http://dx.doi.org/10.1016/0079-6565(87)80008-0
http://dx.doi.org/10.1103/PhysRevB.76.085104
http://dx.doi.org/10.1103/PhysRevLett.79.3736
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.037
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevA.73.022305
http://dx.doi.org/10.1126/science.284.5422.1967
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<1095::AID-PROP1095>3.0.CO;2-U
http://dx.doi.org/10.1103/PhysRevLett.20.180
http://dx.doi.org/10.1080/09500340701534857
http://dx.doi.org/10.1088/0022-3719/4/11/020
http://arxiv.org/abs/0708.1498
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/PhysRevLett.95.037202
http://dx.doi.org/10.1103/PhysRevA.77.032315
http://www.njp.org/

	Dartmouth College
	Dartmouth Digital Commons
	8-6-2008

	Advantages of Randomization in Coherent Quantum Dynamical Control
	Lea F. Santos
	Lorenza Viola
	Recommended Citation


	1. Introduction
	2. DD framework
	2.1. Control setting
	2.2. Performance metric
	2.3. Logical versus physical frame

	3. DD design
	3.1. Deterministic protocols
	3.2. Randomized protocols
	3.3. Performance lower bounds

	4. Model system and control requirements
	4.1. Model system
	4.2. Control requirements

	5. Randomization over inefficient decoupling groups
	6. Randomization over efficient decoupling groups
	6.1. Analytical results
	6.2. Numerical results

	7. Pulse imperfections
	7.1. Finite pulse widths
	7.2. Flip angle errors

	8. Conclusions
	8.1. Summary
	8.2. Outlook

	Acknowledgments
	Appendix. Dominant terms in the average Hamiltonian
	A.1. Lowest-order average Hamiltonian: \bar{H}(0) 
	A.2. First-order contribution to the average Hamiltonian: \bar{H}(1) 
	A.3. Second-order contribution to the average Hamiltonian: \bar{H}(2) 

	References

