1,083 research outputs found
The Complexity of Finding Small Triangulations of Convex 3-Polytopes
The problem of finding a triangulation of a convex three-dimensional polytope
with few tetrahedra is proved to be NP-hard. We discuss other related
complexity results.Comment: 37 pages. An earlier version containing the sketch of the proof
appeared at the proceedings of SODA 200
Corrosion-protective coatings from electrically conducting polymers
In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications
Hybrid CO<sub>2</sub>-Ti:sapphire laser with tunable pulse duration for mid-infrared-pump terahertz-probe spectroscopy
We describe a mid-infrared pump – terahertz-probe setup based on a CO2 laser seeded with 10.6 μm wavelength pulses from an optical parametric amplifier, itself pumped by a Ti:Al2O3 laser. The output of the seeded CO2 laser produces high power pulses of nanosecond duration, which are synchronized to the femtosecond laser. These pulses can be tuned in pulse duration by slicing their front and back edges with semiconductor-plasma mirrors irradiated by replicas of the femtosecond seed laser pulses. Variable pulse lengths from 5 ps to 1.3 ns are achieved, and used in mid-infrared pump, terahertz-probe experiments with probe pulses generated and electro-optically sampled by the femtosecond laser
Recommended from our members
Catastrophic stress corrosion failure of Zr-base bulk metallic glass through hydrogen embrittlement
Zr-base bulk metallic glasses (BMG) are prone to pitting corrosion in halide containing solutions and also stress corrosion cracking (SCC) is often interpreted in this context. This work presents in situ SCC experiments on notched Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) BMG bars under 3-point bending in dilute NaCl solution. They show that pitting corrosion is only the initiating process. The pitted areas have a lower local corrosion potential and the reaction of Zr4+ to zirconyl ions in solution produces H+ that can be reduced and absorbed in the local acidic environment. So, hydrogen embrittlement causes the observed catastrophic failure and peculiar fracture surface characteristics. © 2019 The Author
BPS Saturation from Null Reduction
We show that any -dimensional strictly stationary, asymptotically
Minkowskian solution of a null reduction of -dimensional pure
gravity must saturate the BPS bound provided that the KK vector field can be
identified appropriately. We also argue that it is consistent with the field
equations.Comment: 10 page
The supersymmetric Ward identities on the lattice
Supersymmetric (SUSY) Ward identities are considered for the N=1 SU(2) SUSY
Yang Mills theory discretized on the lattice with Wilson fermions (gluinos).
They are used in order to compute non-perturbatively a subtracted gluino mass
and the mixing coefficient of the SUSY current. The computations were performed
at gauge coupling =2.3 and hopping parameter =0.1925, 0.194,
0.1955 using the two-step multi-bosonic dynamical-fermion algorithm. Our
results are consistent with a scenario where the Ward identities are satisfied
up to O(a) effects. The vanishing of the gluino mass occurs at a value of the
hopping parameter which is not fully consistent with the estimate based on the
chiral phase transition. This suggests that, although SUSY restoration appears
to occur close to the continuum limit of the lattice theory, the results are
still affected by significant systematic effects.Comment: 34 pages, 7 figures. Typo corrected, last sentence reformulated,
reference added. To appear in Eur. Phys. J.
Extremal properties for dissections of convex 3-polytopes
A dissection of a convex d-polytope is a partition of the polytope into
d-simplices whose vertices are among the vertices of the polytope.
Triangulations are dissections that have the additional property that the set
of all its simplices forms a simplicial complex. The size of a dissection is
the number of d-simplices it contains. This paper compares triangulations of
maximal size with dissections of maximal size. We also exhibit lower and upper
bounds for the size of dissections of a 3-polytope and analyze extremal size
triangulations for specific non-simplicial polytopes: prisms, antiprisms,
Archimedean solids, and combinatorial d-cubes.Comment: 19 page
Recommended from our members
Influence of isothermal omega precipitation aging on deformation mechanisms and mechanical properties of a β-type Ti-Nb alloy
In this study, the influence of ωiso precipitates on the active deformation mechanisms and the mechanical properties of the biomedical β-type Ti-40Nb alloy are revealed. Low temperature heat treatments (aging) at 573 K for durations up to 108.0 ks were carried out for a cold-rolled and recrystallized sample state. After an aging time of 3.6 ks the ωiso phase was determined by means of synchrotron XRD and the fraction and the crystallite size of ωiso increased progressively with increasing aging time. Due to the high intrinsic Young's modulus of the ωiso phase, the Young's modulus increased gradually with the aging time from 63 GPa, for the recrystallized reference condition, to values of 70 GPa (3.6 ks), 73 GPa (14.4 ks), 81 GPa (28.8 ks) and 96 GPa (108.0 ks). Depending on the aging time, also a change of the active deformation mechanisms occurred, resulting in significantly altered mechanical properties. For the single β-phase reference microstructure, stress-induced martensite (SIM) formation, {332} twinning and dislocation slip were observed under tensile loading, resulting in a low 0.2% proof stress of around 315 MPa but a high elongation at fracture of 26.2%. With increasing aging time, SIM formation and mechanical twinning are progressively hindered under tensile loading. SIM formation could not be detected for samples aged longer than 3.6 ks. The amount and thickness of deformation twins is clearly reduced with increasing aging time and for samples aged longer than 14.4 ks deformation twinning is completely suppressed. As a result of the changed deformation mechanisms and the increase of the critical stress for slip caused by ωiso, the 0.2% proof stress of the aged samples increased gradually from 410 MPa (3.6 ks) to around 910 MPa (108.0 ks). With regard to application as new bone implant material, a balanced ratio of a low Young's modulus of E = 73 GPa and higher 0.2% proof stress of 640 MPa was achieved after an aging time of 14.4 ks
Damage-free single-mode transmission of deep-UV light in hollow-core PCF
Transmission of UV light with high beam quality and pointing stability is
desirable for many experiments in atomic, molecular and optical physics. In
particular, laser cooling and coherent manipulation of trapped ions with
transitions in the UV require stable, single-mode light delivery. Transmitting
even ~2 mW CW light at 280 nm through silica solid-core fibers has previously
been found to cause transmission degradation after just a few hours due to
optical damage. We show that photonic crystal fiber of the kagom\'e type can be
used for effectively single-mode transmission with acceptable loss and bending
sensitivity. No transmission degradation was observed even after >100 hours of
operation with 15 mW CW input power. In addition it is shown that
implementation of the fiber in a trapped ion experiment significantly increases
the coherence times of the internal state transfer due to an increase in beam
pointing stability
- …