7 research outputs found

    Obscured activity and the role of environment on galaxy evolution at high redshift

    Get PDF
    A significant amount of activity in the Universe is obscured by dust, produced in the final phases of stellar evolution and in the detonation of Type II supernovae. Re-processed radiation from starlight is emitted from this dust at infrared wavelengths, and this must be taken into consideration when performing surveys of star formation (and nuclear activity) in order to form an unbiased picture of galaxy evolution. It is also clear that the star formation histories of galaxies are significantly modified by their local environment, the outcome of which is the characteristic galaxy populations observed in rich clusters and in the field in the local Universe. In this thesis I examine galaxy evolution in the context of environment from z ~ 0.5 to 2 ~ 3, paying attention to obscured activity revealed by observations in the rest-frame infrared. A mid-infrared (24μm) survey of two intermediate redshift clusters reveals a population of luminous infrared galaxies (LIRGs) which are missed in optical surveys (or significantly underestimated in terms of their star formation rates). Despite there being a large difference between the number of LIRGs detected in the two clusters (likely due to varying global cluster properties controlling the survival of starbursts in the cluster environment), these could be a potentially important population of galaxies. Their large star formation rates mean that they could evolve into local passive S0s by the present day. Although the S0s must be assembled after z ~ 0.5, local clusters are also dominated by massive elliptical galaxies which are mostly already in place by z ~ 0.5, and therefore must have assembled their stellar mass at much higher redshifts (z ≥3). At z = 3.1 I examine the nature of extreme activity in a rich, primitive environment - an example of a progenitor of a rich cluster of galaxies, and therefore the likely site of formation of local massive ellipticals. A number of giant (100 kpc-scale) Lyman-α emission-line nebulae (LABs) in the SA 22 protocluster contain bright submillimeter (850μm) galaxies (SMGs). Their extremely luminous rest-frame far-infrared emission suggest very high star formation rates and/or nuclear activity. Given that a large fraction of LABs seem to contain these active galaxies, it is plausible to link LABs' formation with feedback events such as superwind outflows from starburst regions. Indeed, a weak correlation between the SMGs' bolometric luminosity and the LABs' Lya luminosities appears to suggest that SMGs are powering these extended haloes. Although feedback from active galaxies appears to be important at early times, it remains a significant factor in galaxy-environment symbiosis at all epochs. The most profound effect a galaxy can have on its surroundings is to impart energy to the surrounding medium. In clusters, this is important for preventing the cooling of baryons and therefore the truncation of star formation. I investigate the environments of four low-power (L(_1.4GHz) ≤ 10(^25) WHz (^-1)) radio galaxies in the Subaru-XMM-Newton Deep Field at z ~ 0.5. The environments are all found to be moderately rich groups, and at least one shows evidence that it is in a stage of cluster assembly via sub-group merging. The conclusion is that the radio loud active galactic nuclei are triggered by galaxy-galaxy interactions within sub-groups, prior to cluster virialisation. These radio galaxies are destined to become brightest cluster galaxies, providing a low-power, but high-duty cycle feedback on gas in high-density regions at low redshift - necessary to suppress star formation in massive ellipticals at z ~ 0. The hostility of clusters to star formation (or at least the observation that it is suppressed in the highest density regions of the local Universe) is thought to be in part responsible for the rapid decline in the global volume averaged star formation rate (SFRD) since 2 ~ 1. Tracking the evolution of the SFRD beyond z ~ 1 is hard, because optical tracers (e.g. Ha) used in the local Universe become redshifted into the near-infrared, and up until recently the cameras suitable for large surveys have not been available. I have performed the largest ever near-infrared narrowband blank field survey for Hα emission at z = 2.23. Understanding the evolution of the SFRD before its decline to the present day is essential if we are to find the 'epoch' of galaxy formation. I present the Hα luminosity function and measure the SFRD at this epoch, finding little evolution in the time between z = 1.3 and z = 2.23. This is consistent with a flattening of the SFRD, indicating that this is the peak era of star formation in the Universe, before the gradual suppression of activity during the build up of groups and clusters to the present day

    The History and Prehistory of Natural-Language Semantics

    Get PDF
    Contemporary natural-language semantics began with the assumption that the meaning of a sentence could be modeled by a single truth condition, or by an entity with a truth-condition. But with the recent explosion of dynamic semantics and pragmatics and of work on non- truth-conditional dimensions of linguistic meaning, we are now in the midst of a shift away from a truth-condition-centric view and toward the idea that a sentence’s meaning must be spelled out in terms of its various roles in conversation. This communicative turn in semantics raises historical questions: Why was truth-conditional semantics dominant in the first place, and why were the phenomena now driving the communicative turn initially ignored or misunderstood by truth-conditional semanticists? I offer a historical answer to both questions. The history of natural-language semantics—springing from the work of Donald Davidson and Richard Montague—began with a methodological toolkit that Frege, Tarski, Carnap, and others had created to better understand artificial languages. For them, the study of linguistic meaning was subservient to other explanatory goals in logic, philosophy, and the foundations of mathematics, and this subservience was reflected in the fact that they idealized away from all aspects of meaning that get in the way of a one-to-one correspondence between sentences and truth-conditions. The truth-conditional beginnings of natural- language semantics are best explained by the fact that, upon turning their attention to the empirical study of natural language, Davidson and Montague adopted the methodological toolkit assembled by Frege, Tarski, and Carnap and, along with it, their idealization away from non-truth-conditional semantic phenomena. But this pivot in explana- tory priorities toward natural language itself rendered the adoption of the truth-conditional idealization inappropriate. Lifting the truth-conditional idealization has forced semanticists to upend the conception of linguistic meaning that was originally embodied in their methodology

    High-resolution SMA imaging of bright submillimetre sources from the SCUBA-2 Cosmology Legacy Survey

    Get PDF
    We have used the Submillimeter Array (SMA) at 860 µm to observe the brightest sources in the Submillimeter Common User Bolometer Array-2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). The goal of this survey is to exploit the large field of the S2CLS along with the resolution and sensitivity of the SMA to construct a large sample of these rare sources and to study their statistical properties. We have targeted 70 of the brightest single-dish SCUBA-2 850 µm sources down to S850 ≈ 8 mJy, achieving an average synthesized beam of 2.4 arcsec and an average rms of σ860 = 1.5 mJy beam−1 in our primary beam-corrected maps. We searched our SMA maps for 4σ peaks, corresponding to S860 6 mJy sources, and detected 62, galaxies, including three pairs. We include in our study 35 archival observations, bringing our sample size to 105 bright single-dish submillimetre sources with interferometric followup. We compute the cumulative and differential number counts, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent S2CLS cumulative number count by 14 ± 6 per cent between 11 and 15 mJy. We estimate the probability that a 10 mJy singledish submillimetre source resolves into two or more galaxies with similar flux densities to be less than 15 per cent. Assuming the remaining 85 per cent of the targets are ultraluminous starburst galaxies between z = 2 and 3, we find a likely volume density of 400 M yr−1 sources to be ∼ 3+0.7 −0.6 × 10−7 Mpc−3. We show that the descendants of these galaxies could be 4 × 1011 M local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star formation
    corecore