97 research outputs found

    The Arbitration Act 1996: Time for Reform?

    Get PDF
    This is the author accepted manuscript. The final version is available online via Westlaw.In 1989 the Departmental Advisory Committee on Arbitration Law (the DAC), recommended that England should not adopt the UNCITRAL Model Law of Arbitration (Model Law) and that, instead, there should be a new and improved Arbitration Act. This article reviews the AA 1996 and the need for reform. It focuses on the main issues that have attracted judicial attention in the 21 years of its operation in England and other jurisdictions and draws conclusions from the judicial lessons learnt in other jurisdictions which have either enacted the Model Law per se or may have largely based the product of their legislative enactment on the Model Law. In the light of the above analysis, the article finally address the question of the suitability or not of the AA 1996, the question of whether the time for yet another reform has arrived and it also assesses the suitability of the Model Law

    Degradation of Polystyrene Foam under Radiant Heat Flux

    Get PDF
    As the demand for liquefied natural gas has increased, safety concerns about the performance of transport vessels under fire conditions have been raised. Current codes for the sizing of the pressure relief systems require that the vessels are able to withstand an emmissive heat flux of 108kW/m2 and do not take into account the effects of insulation loss due to thermal decomposition of the insulation materials. To address this possible oversight in the current code models were presented to a working group organized by the Society of International Gas Tanker and Terminal Operators Ltd. focusing on the decomposition rate of the polystyrene insulation used on many of these shipping vessels under fire conditions. The working group considered a range of heat flux from liquified natural gas pool fires with fluxes up to 300kW=m2. However, without experimental verification of the behavior of the polystyrene insulation under these conditions the working group deferred the concerns stating that, a better understanding of the foam plastic insulation vulnerability to heating is required to adequately assess the hazards that could result from loss of insulation effectiveness with fire exposure . Using an experimental procedure adapted from the work of Braumen, Chen and Matzinger on the thermal response of solid polystyrene under fire conditions, a rod driven apparatus was constructed to measure the regression rates of both solid and foamed samples of polystyrene as a function of external heat flux. From a plot of this data the heat loss to the surroundings and the heat of vaporization of the samples were calculated. Comparisons of the heats of vaporization were made to the values reported here as well as to independent differential scanning calorimetry and thermogravimetric analysis data. It was shown that the mass loss rate of the foamed polystyrene is essentially the same as the solid polystyrene when exposed to high rates of heating. The only significant difference between the two forms of polystyrene is in the linear regression rate which is higher in the foamed polystyrene by approximately the same ratio as the densities, about 40 to 1. The heat of vaporization for the solid polystyrene and the foamed polystyrene were found to be 1592J/g and 1693J/g respectively. The comparison to the differential scanning calorimetry data for the samples was within 10%. The linear regression of the foamed polystyrene was found to be 0:138cm/min for each kW/m2 of absorbed heat

    Buques LNG:FSRU

    Get PDF
    [Resumen]Al tratarse de una energía versátil, limpia, económica y eficiente, el gas natural en estado gaseoso ofrece muy distintos usos y aplicaciones, tanto en los ámbitos comerciales y de servicios, como en el industrial y la propia generación de energía eléctrica. Sin embargo, por ser un gas, tanto su transporte como su almacenamiento deberán realizarse en estado líquido al objeto de reducir al máximo su volumen para, de esta manera, optimizar tanto el espacio requerido por dichos procesos, como igualmente la tecnología implícita en los mismos, en definitiva, para que su transporte sea rentable. El proceso de conversión de gas de la fase gaseosa a la líquida es denominado licuefacción. El proceso contrario es conocido como regasificación. Los buques GNL tradicionales transportan el gas en fase licuada de una terminal a otra, y es en las terminales en donde se lleva a cabo la regasificación para, desde allí, enviarse posteriormente a la red de suministro. Por otro lado, existen los denominados buques FSRU (Floating Storage and Regasification Unit / Unidades Flotantes de Almacenamiento y de Regasificación), los cuales son capaces de realizar el proceso de regasificación a bordo. Estos buques suelen estar amarrados a una torre o a tierra y envían el gas regasificado directamente a la red de suministro de tierra para su explotación industrial. Este proceso conlleva un gran ahorro de costes, de tiempo y de infraestructura requerida, además de disminuir considerablemente el impacto ambiental. Asimismo, estos buques pueden movilizarse muy fácilmente donde sean solicitados a fin de satisfacer la demanda de gas, requiriendo por otro lado de muchos menos permisos y recursos que una terminal de gas convencional. Este Trabajo de Fin de Grado hace especial hincapié en la economía que subyace detrás del gas natural. Como materia prima utilizada principalmente como combustible en la industria de producción de electricidad y el transporte, compite con otras opciones como el carbón y el petróleo, cuya combustión genera emisiones muy dañinas para la capa de ozono y el medio ambiente en general. Asimismo, y debido a diferentes regulaciones y convenios existentes ya en estos momentos, se prevé que el gas natural tendrá un crecimiento considerable en las próximas décadas, ello por tratarse de una fuente de energía con un nivel de emisiones de óxidos de azufre, óxidos nitrosos y materia particulada muy inferiores al de otras opciones energéticas más tradicionales. En el presente trabajo se aborda el ciclo del GNL desde que entra por las mangueras o brazos de carga, explicando el proceso de almacenamiento en los distintos tipos de tanques, el funcionamiento de la planta de relicuefacción, las bombas de alta y baja presión y, finalmente, la exportación del gas. Además, trataremos la maniobra de abarloamiento entre buques GNL y buques FSRU, y la operación de transferencia de GNL.[Abstract] As it is a versatile, clean, economical and efficient energy, natural gas in its gaseous state offers a range of very diverse uses and applications, both in the commercial and service areas, as for the industrial and the generation of electric power itself. However, because it is a gas, both its transport and its storage must be carried out in a liquid state in order to reduce its volume to the maximum as for to optimize both, the room required by these processes and the technology implicit in the processes themselves. The gas conversion process from the gas phase to the liquid phase is called liquefaction. The opposite process is known as regasification. Traditional LNG (liquefied natural gas) vessels transport liquefied gas from one terminal to another, and it is at terminals where the regasification is carried out. From there it is subsequently sent to the supply network. On the other hand, there are so-called FSRU vessels (Floating Storage and Regasification Unit) which are capable of carrying out the on-board regasification process themselves. These vessels are usually moored to a tower or to land and send regasified gas directly to the land supply network for industrial uses and operations. This process entails a great saving in costs, time and required infrastructure, in addition to considerably reducing the environmental impact. Also, these vessels can be easily located where needed in order to satisfy the gas demand, requiring on the other hand much fewer permits and resources than a conventional gas terminal. This End-of-Degree Project emphasizes the economy that underlies natural gas. As a feedstock used mainly as fuel in the electricity production and transport industry, it competes with other options such as coal and oil, whose combustion generates very harmful emissions for the ozone layer and the environment in general. Also, due to different regulations and agreements currently already in place, it is expected that natural gas will have considerable growth in the coming decades, because it is a source of energy with a level of emissions of sulphur oxides, nitrous oxides and particulate matter very inferior to other more traditional energy options. In the present work we will deal with the LNG cycle from the moment it enters the hoses or loading arms, explaining the storage process in the different types of tanks, the operation of the reliquefaction plant, the high and low pressure pumps and, finally , the export of gas. In addition, we will deal with the manoeuvre alongside between LNG vessels and FSRU vessels.Traballo fin de grao (UDC.ETSNEM). Náutica e transporte marítimo. Curso 2017/201

    Development of procedures for loading, transport, unloading and ballast voyage operations applicable to LNG carriers

    Get PDF
    El transporte del Gas Natural por vía marítima es rentable cuando se licúa debido a la relación de cambio de volumen de gas a líquido, permitiendo acumular una gran cantidad de gas en un espacio pequeño tras su cambio de estado. Esta materia prima cumple un papel primordial en la generación de energía eléctrica en países con problemas de contaminación del aire. Además, su uso como combustible marítimo genera un impacto medioambiental inferior al de otros combustibles fósiles debido al porcentaje de contaminantes presentes en sus emisiones. La industria del GNL (Gas Natural Licuado) tendrá un crecimiento económico considerable durante las próximas décadas. Esta demanda global promueve el desarrollo constante de nuevas tecnologías y sistemas modernos de gestión de las operaciones de carga que requieren un gran conocimiento del campo y aplicación de procesos específicos. La finalidad del presente trabajo es crear una guía metodológica para la ejecución de procedimientos de carga, descarga, viaje cargado, viaje en lastre y gestión del boil-off (gas evaporado del GNL) en buques GNL modernos, mediante la descripción de los sistemas presentes a bordo, su funcionamiento, creación de listas de comprobación y uso de flujogramas para esquematizar el mapa de procesos necesario para llevar a cabo estas operaciones.Máster en Ingeniería Náutica y Gestión Marítim

    Nova generacija LNG tankera

    Get PDF
    U diplomskom radu je obrađena podjela dosadašnjih tipova teretnih tankova za prijevoz ukapljenog plina. Opisana je građevna struktura,materijali za izradu oplate tanka i izolacije. Provedena je direktna usporedba dvaju najzastupljenijih sistema tankova,membranskog i sfernog, te navedene njihove prednosti i nedostaci. U programu Rhinoceros su dizajnirani razni novi oblici membranskih tankova sa do sada još neprovjerenim karaktristikama.Dizajn svakog posebnog oblika tanka je prenesen u program GHS gdje je prethodno dizajniran prototip bez tankova tereta. Na taj način je dobiveno pet LNG tankera s novim oblicima teretnih tankova i jedan sa konvencionalnim oblikom tanka radi usporedbe. U spomenutom programu su izrađena karakteristična stanja krcanja svakog broda s provjerom trima, stabiliteta i čvrstoće.Prihvaćen je brod sa optimalnim oblikom tanka te je upravo za njega dalje definiran oblik propulzije, dijagram mase praznog opremljenog broda, nacrtano glavno rebro i opći plan, uz kratak tehnički opis i ekonomsku analizu novog LNG tankera

    On Tail Index Estimation based on Multivariate Data

    Full text link
    This article is devoted to the study of tail index estimation based on i.i.d. multivariate observations, drawn from a standard heavy-tailed distribution, i.e. of which 1-d Pareto-like marginals share the same tail index. A multivariate Central Limit Theorem for a random vector, whose components correspond to (possibly dependent) Hill estimators of the common shape index alpha, is established under mild conditions. Motivated by the statistical analysis of extremal spatial data in particular, we introduce the concept of (standard) heavy-tailed random field of tail index alpha and show how this limit result can be used in order to build an estimator of alpha with small asymptotic mean squared error, through a proper convex linear combination of the coordinates. Beyond asymptotic results, simulation experiments illustrating the relevance of the approach promoted are also presented

    Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis

    Get PDF
    In the liquefied natural gas (LNG) shipping industry, the phenomenon of sloshing can lead to the occurrence of very high pressures in the tanks of the vessel. The issue of modelling or estimating the probability of the simultaneous occurrence of such extremal pressures is now crucial from the risk assessment point of view. In this paper, heavy-tail modelling, widely used as a conservative approach to risk assessment and corresponding to a worst-case risk analysis, is applied to the study of sloshing. Multivariate heavy-tailed distributions are considered, with Sloshing pressures investigated by means of small-scale replica tanks instrumented with d >1 sensors. When attempting to fit such nonparametric statistical models, one naturally faces computational issues inherent in the phenomenon of dimensionality. The primary purpose of this article is to overcome this barrier by introducing a novel methodology. For d-dimensional heavy-tailed distributions, the structure of extremal dependence is entirely characterised by the angular measure, a positive measure on the intersection of a sphere with the positive orthant in Rd. As d increases, the mutual extremal dependence between variables becomes difficult to assess. Based on a spectral clustering approach, we show here how a low dimensional approximation to the angular measure may be found. The nonparametric method proposed for model sloshing has been successfully applied to pressure data. The parsimonious representation thus obtained proves to be very convenient for the simulation of multivariate heavy-tailed distributions, allowing for the implementation of Monte-Carlo simulation schemes in estimating the probability of failure. Besides confirming its performance on artificial data, the methodology has been implemented on a real data set specifically collected for risk assessment of sloshing in the LNG shipping industry

    Comparative Research and Optimized Design of Pressing board for Installation of Secondary Barrier of Membrane MARK Ⅲ type LNG carrier

    Get PDF
    Membrane MARK Ⅲ type LNG선 Cargo Containment System의 secondary barrier 설치용 New pressing board의 기능향상에 대한 검증 및 Original pressing board와의 비교실험 결과는 다음과 같다. 1. Pressing board의 3mm Epilon sheet를 5mm EVA sponge로 변경한 후, Insulation panel간의 단차를 보정하는 기능이 향상되었다. 2. 개선된 New pressing board는 Secondary barrier의 접착구역의 Air bubble 함유량을 감소시키는 기능이 향상되어 내구성이 증가하였다. 3. Original pressing board를 사용하는 경우보다 접착부의 Epoxy glue 두께는 얇아졌지만 규정치를 만족하므로 현업에 적용가능하다. 4. Cryogenic single shearing test를 통하여, 파단양상에 따른 인장하중 값을 만족하므로 현업에 적용가능하다 New pressing board는 Insulation panel간의 단차를 최적으로 보정하여, 접착구역의 Air bubble함유량을 최소화시키므로, 선박운항 중 선체의 Motion에 대한 Secondary barrier의 내구성 향상에 탁월한 기능을 보여주었으므로, MARK Ⅲ type LNG선 CCS공사의 품질개선 및 잠재적인 사고발생에 대하여 수리비용 절감효과가 기대됩니다.In this study, an optimized pressing device for secondary barrier installation regarding membrane MARK Ⅲ type cargo containment system is studied experimentally. The secondary barrier is built up by bonding with epoxy glue between Rigid Secondary Barrier and Flexible Secondary Barrier and the new pressing device improves bonding condition such as decrease of air bubbles in the bonded area, increase of adhesion strength. To qualify this new pressing board, a few test were carried out to compare with the original pressing board. Advantages and disadvantages of the developed pressing board were found out to decide its effectiveness.제 1 장 서론 = 1 1.1 연구의 필요성 = 1 1.1.1 MARK Ⅲ type LNG선 Cargo Containment System = 1 1.1.2 Secondary barrier의 중요성 = 3 1.1.3 Pressing board가 Secondary barrier bonding에 미치는 영향 = 3 1.2 기존의 연구 = 4 1.3 연구의 구성 및 목적 = 4 제 2 장 Stage별 장비 및 도구 = 5 2.1 Mixing stage = 5 2.1.1 Epoxy glue dispenser 구조 = 6 2.1.2 Epoxy glue dispenser test = 7 2.2 Depositing stage = 8 2.3 Pressing stage = 8 2.3.1 Secondary barrier pressing device = 9 2.3.2 Pressing board 구조비교 = 10 2.4 Testing stage = 14 2.4.1 Pressure sensing mat = 14 2.4.2 Cryogenic chamber for single shearing test = 15 2.4.3 Measuring tools and method = 17 제 3 장 New pressing board 검증 및 비교분석 = 20 3.1 New pressing board 테스트 조건 = 20 3.2 Pressure sensing mat를 통한 압력분포비교 = 22 3.3 Air bubble 함유량 비교 = 25 3.4 Epoxy glue thickness 적정성 확인 = 28 3.5 Single shearing test = 30 3.5.1 Shearing strength 결과 = 30 3.5.1.1 Cohesivity rate에 따른 최소 인장하중 값 합부판정 규정 = 30 3.5.1.2 Flat area & Flat area = 31 3.5.1.3 Flat area & Corner area = 32 3.5.1.4 Corner 90° area = 33 3.5.1.5 Corner 135° area = 34 3.5.2 Cohesivity value VS Shearing strength = 35 3.5.2.1 Flat area & Flat area = 35 3.5.2.2 Flat area & Corner area = 36 3.5.2.3 Corner 90° area = 37 3.5.2.4 Corner 135° area = 38 제 4 장 결론 = 39 제 5 장 참고문헌 = 4

    H2 generation on board LNG/c

    Get PDF
    RESUMEN: Este trabajo estudiará el aprovechamiento del boil-off de un buque gasero, evaporación que tiene lugar debido a la transferencia de calor del entorno al interior de los tanques de carga. Este aprovechamiento se basa en la generación de hidrógeno a bordo, combustible limpio y de futuro que permite alimentar una pila de hidrógeno. Para la generación de hidrógeno se usará el método del reformado autotérmico, proceso muy eficiente y que se puede adaptar a las características de la planta energética del buque. La pila alimentará los servicios de 220V del cuadro de Emergencia, usándose como ejemplo para otro tipo de aplicaciones. El dimensionamiento correcto de la planta, con la alimentación adecuada y pilas de mayor potencia, podrían servir para aplicaciones de mayor calado, como la propulsión del buque o la alimentación de la planta eléctrica al completo.ABSTRACT: The following project is based on the study of how the boil-off gas of an LNG carrier can be used for hydrogen generation. This gas evaporation takes place inside the cargo tanks, as result of the heat transfer from the environment into the tanks. Hydrogen is a clean and promising fuel for the future of the marine industry, and can be used to feed a fuel cell stack, as it is going to be studied in the present work. Hydrogen generation will take place using the autothermal reforming method, which is a very efficient process and easy to adapt to the vessel power plant characteristics. Hydrogen fuel cell will be installed to supply electric power to 220V Emergency switchboard, being an example for other type of applications. The correct sizing of the hydrogen energy plant, taking care of feeding amounts and fuel cell power, can be studied to bigger applications, as ship propulsion or electric power plant fully supply on board.Máster en Ingeniería Marin

    Skladištenje i transport prirodnog plina i naftnih plinova u spremnicima

    Get PDF
    U svijetu postoji nekoliko vrsta goriva koja se koriste u energetske svrhe te isto tako za pogon vozila. Neki od njih su benzinsko i dizelsko gorivo koji su dugi niz godina prisutni u široj uporabi. Unazad nekoliko desetaka godina uz njih se povećava uporaba prirodnog i naftnog plina. U radu je objašnjena povijest korištenja plinova u kućanstvima, industriji, a naposlijetku i kao pogonska goriva za vozila. Njih se upotrebljava u više agregatnih stanja. Prirodni plin, kao i naftni plin, pronalazi širu uporabu u kapljevitom stanju. Naftni plin se ne koristi u plinovitom stanju, dok se prirodni koristi kao stlačeni prirodni plin. Od početka ukapljivanja prirodnog plina pa do danas, u procesima ukapljivanja nije došlo do velikih promjena. Prvo ukapljivanje prirodnog plina seže u 19. stoljeće kada je britanski kemičar i fizičar Michael Faraday obavljao pokuse ukapljivanja plinova, između ostalog i prirodnog plina. Objašnjeni su svi problemi na koje se nailazilo tijekom povijesnog razvoja skladištenja i transporta plina. Prikazani su spremnici u koje se skladišti ukapljeni prirodni plin i ukapljeni naftni plin te njihove karakteristike. U današnje vrijeme uporaba prirodnog plina se povećava, a prognozira se da će se konzumacija plina kroz sljedećih desetaka godina dovesti na razinu konzumacije sa sadašnjim komercijalnim gorivima
    corecore