579 research outputs found

    Zielonka's Recursive Algorithm: dull, weak and solitaire games and tighter bounds

    Full text link
    Dull, weak and nested solitaire games are important classes of parity games, capturing, among others, alternation-free mu-calculus and ECTL* model checking problems. These classes can be solved in polynomial time using dedicated algorithms. We investigate the complexity of Zielonka's Recursive algorithm for solving these special games, showing that the algorithm runs in O(d (n + m)) on weak games, and, somewhat surprisingly, that it requires exponential time to solve dull games and (nested) solitaire games. For the latter classes, we provide a family of games G, allowing us to establish a lower bound of 2^(n/3). We show that an optimisation of Zielonka's algorithm permits solving games from all three classes in polynomial time. Moreover, we show that there is a family of (non-special) games M that permits us to establish a lower bound of 2^(n/3), improving on the previous lower bound for the algorithm.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Strategy Derivation for Small Progress Measures

    Full text link
    Small Progress Measures is one of the most efficient parity game solving algorithms. The original algorithm provides the full solution (winning regions and strategies) in O(dm(n/d/2)d/2)O(dm \cdot (n/\lceil d / 2 \rceil)^{\lceil d/2 \rceil}) time, and requires a re-run of the algorithm on one of the winning regions. We provide a novel operational interpretation of progress measures, and modify the algorithm so that it derives the winning strategies for both players in one pass. This reduces the upper bound on strategy derivation for SPM to O(dm(n/d/2)d/2)O(dm \cdot (n/\lfloor d / 2 \rfloor)^{\lfloor d/2 \rfloor}).Comment: polished the tex

    Chirally motivated K^- nuclear potentials

    Get PDF
    In-medium subthreshold KbarN scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K^- atom data across the periodic table. Substantially deeper K^- nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold amplitudes, with Re V_{chiral} = -(85+/-5) MeV at nuclear matter density. When KbarNN contributions are incorporated phenomenologically, a very deep K^- nuclear potential results, Re V_{chiral+phen.} = -(180+/-5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K^- nuclear quasibound states are reported and discussed.Comment: extended discussion, unchanged results and conclusions, accepted by PL

    Once Upon A Time: Exposing Sexism in Children’s Literature

    Get PDF
    What about a book sparks a child’s understanding of the world around them? It is the characters’ actions and dialogue, certainly, which children imitate and interact with one another. In American society, children’s literature often portrays images of girls and boys happily conforming to the gender binary. Why and how did children’s literature become so focused on keeping children in line with their assigned sex and gender? This research looks at the way American society views sex and gender, how these views have been and are implemented on children through literature, and what we should do to stop such strict performance expectations. Through examination of the 1970’s children’s book, I’m Glad I’m A Boy! I’m Glad I’m A Girl! by Whitney Darrow Jr., the way in which gender roles are continuously portrayed in children’s literature is assessed and proven to be an ineffective way to socialize both girls and boys successfully

    Multi-Kˉ\bar{K} nuclei and kaon condensation

    Full text link
    We extend previous relativistic mean-field (RMF) calculations of multi-Kˉ\bar K nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting Kˉ\bar K separation energy BKˉB_{\bar K}, as well as the associated nuclear and Kˉ\bar K-meson densities, saturate with the number κ\kappa of Kˉ\bar K mesons for κ>κsat10\kappa > \kappa_{\rm sat} \sim 10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BKˉB_{\bar K} generally does not exceed 200 MeV, it is argued that multi-Kˉ\bar K nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and Kˉ0{\bar K}^0 mesons, or protons and KK^- mesons, and study their properties.Comment: 21 pages, 8 figures, revised text and reference

    Realistic calculations of Kbar-N-N, Kbar-N-N-N, and Kbar-Kbar-N-N quasibound states

    Get PDF
    Binding energies and widths of three-body KbarNN, and of four-body KbarNNN and KbarKbarNN nuclear quasibound states are calculated in the hyperspherical basis, using realistic NN potentials and subthreshold energy dependent chiral KbarN interactions. Results of previous K^-pp calculations are reproduced and an upper bound is placed on the binding energy of a K^-d quasibound state. A self consistent handling of energy dependence is found to restrain binding, keeping the calculated four-body ground-state binding energies to relatively low values of about 30 MeV. The lightest strangeness -2 particle-stable Kbar nuclear cluster is most probably KbarKbarNN. The calculated Kbar N -> pi Y conversion widths range from approximately 30 MeV for the KbarNNN ground state to approximately 80 MeV for the KbarKbarNN ground state.Comment: v3 matching journal publicatio

    Application of balance models in metallurgy

    Get PDF
    In general, management is the planning and coordination of all processes and their elements in enterprises in order to achieve the objectives with the highest efficiency. The basic management tools, especially in companies with complex production processes with high inertia and long production time, include balance models. The paper points out the methodology, principles and importance of balance models in metallurgy and describes the methodology for material-energy, capacity and economic balance of this process

    Application of balance models in metallurgy

    Get PDF
    In general, management is the planning and coordination of all processes and their elements in enterprises in order to achieve the objectives with the highest efficiency. The basic management tools, especially in companies with complex production processes with high inertia and long production time, include balance models. The paper points out the methodology, principles and importance of balance models in metallurgy and describes the methodology for material-energy, capacity and economic balance of this process
    corecore